Received 12 June 2014; revised 1 October 2014; accepted 10
December 2014
References
/ Nuorodos
[1]
Advances in Infrared Photodetectors, Semiconductors
and Semimetals, Vol. 84, eds. S.D. Gunapala, D.R. Rhiger and C.
Jagadish (Academic Press, San Diego, 2011),
http://www.amazon.co.uk/Advances-Infrared-Photodetectors-Semiconductors-Semimetals-ebook/dp/B005C9GB0W/
[2] B.F. Levine, Quantum-well infrared photodetectors, J. Appl.
Phys.
74(8), R1-81 (1993),
http://dx.doi.org/10.1063/1.354252
[3] X.G. Guo, Z.Y. Tan, J.C. Cao, and H.C. Liu, Many-body
effects on terahertz quantum well detectors, Appl. Phys. Lett.
94(20),
201101 (2009),
http://dx.doi.org/10.1063/1.3134485
[4] D. Seliuta, J. Kavaliauskas, B. Čechavičius, S. Balakauskas,
G. Valušis, B. Sherliker, M.P. Halsall, P. Harrison, M. Lachab,
S.P. Khanna, and E.H. Linfield, Impurity bound-to-unbound
terahertz sensors based on beryllium and silicon δ-doped
GaAs/AlAs multiple quantum wells, Appl. Phys. Lett.
92(5),
053503 (2008),
http://dx.doi.org/10.1063/1.2839585
[5] J. Kundrotas, A. Čerškus, S. Ašmontas, G. Valušis, B.
Sherliker, M.P. Halsall, M.J. Steer, E. Johannessen, and P.
Harrison, Excitonic and impurity-related optical transitions in
Be
δ-doped GaAs/AlAs multiple quantum wells:
Fractional-dimensional space approach, Phys. Rev. B
72(23),
235322 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.235322
[6] J. Kundrotas, A. Čerškus, G. Valušis, A. Johannessen, E.
Johannessen, P. Harrison, and E.H. Linfield, Impurity-related
photoluminescence line shape asymmetry in GaAs/AlAs multiple
quantum wells: Fractional-dimensional space approach, J. Appl.
Phys.
107(9), 093109 (2010).
http://dx.doi.org/10.1063/1.3342673
[7] J. Feldmann, G. Peter, E.O. Göbel, P. Dawson, K. Moore, C.
Foxon, and R.J. Elliott, Linewidth dependence of radiative
exciton lifetimes in quantum wells, Phys. Rev. Lett.
59(20),
2337–2340 (1987),
http://dx.doi.org/10.1103/PhysRevLett.59.2337
[8] M. Gurioli, A. Vinattieri, M. Colocci, C. Deparis, J.
Massies, G. Neu, A. Bosacchi, and S. Franchi, Temperature
dependence of the radiative and nonradiative recombination time
in GaAs/Al
xGa
1-xAs
quantum-well structures, Phys. Rev. B
44(7), 3115–3124
(1991),
http://dx.doi.org/10.1103/PhysRevB.44.3115
[9] J.P. Bergman, P.O. Holtz, B. Monemar, M. Sundaram, J.L.
Merz, and A.C. Gossard, Decay measurements of free- and
bound-exciton recombination in doped GaAs/Al
xGa
1-xAs
quantum wells, Phys. Rev. B
43(6), 4765–4770 (1991),
http://dx.doi.org/10.1103/PhysRevB.43.4765
[10] J. Martinez-Pastor, A. Vinattieri, L. Carraresi, M.
Colocci, Ph. Roussignol, and G. Weimann, Temperature dependence
of exciton lifetimes in GaAs/Al
xGa
1-xAs
single quantum well, Phys. Rev. B
47(16), 10456–10460
(1993),
http://dx.doi.org/10.1103/PhysRevB.47.10456
[11]
PMS-300, PMS-400 and PMS-400A 800 MHz Gated Photon
Counters / Multiscalers (Becker & Hickl GmbH, Berlin,
2004),
http://www.becker-hickl.com/pdf/pms400man01.pdf
[12] W. Becker,
The bh TCSPC Handbook: Fourth Edition
(Becker & Hickl GmbH, Berlin, 2010),
http://www.becker-hickl.com/handbookphp.htm
[13] J. Kundrotas, A. Čerškus, G. Valušis, L.H. Li, E.H.
Linfield, A. Johannessen, and E. Johannessen, Light emission
lifetimes in p-type
δ-doped GaAs/AlAs multiple quantum
wells near the Mott transition, J. Appl. Phys.
112(4),
043105 (2012),
http://dx.doi.org/10.1063/1.4745893
[14] K. Muraki, Y. Takahashi, A. Fujiwara, S. Fukatsu, and Y.
Shiraki, Enhancement of free-to-bound transitions due to
resonant electron capture in Be-doped AlGaAs/GaAs quantum wells,
Solid State Electron.
37(4–6), 1247–1250 (1994),
http://dx.doi.org/10.1016/0038-1101(94)90400-6
[15] A. Fujiwara, K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito,
Enhancement of nonradiative recombination due to resonant
electron capture in Al
xGa
1-xAs/GaAs
quantum-well structures, Phys. Rev. B
51(20),
14324–14329 (1995),
http://dx.doi.org/10.1103/PhysRevB.51.14324
[16] G.E. Stillman, C.M. Wolfe, and J.O. Dimmock,
Magnetospectroscopy of shallow donors in GaAs, Solid State
Commun.
7, 921–925 (1969),
http://dx.doi.org/10.1016/0038-1098(69)90543-2
[17] J. Kundrotas, G. Valušis, A. Čėsna, A. Kundrotaitė, A.
Dargys, A. Sužiedėlis, J. Gradauskas, S. Ašmontas, and K.
Köhler, Excitonic photoluminescence quenching by impact
ionization of excitons and donors in GaAs/Al
0.35Ga
0.65As
quantum wells with an in-plane electric field, Phys. Rev. B
62(23),
15871–15878 (2000),
http://dx.doi.org/10.1103/PhysRevB.62.15871
[18] J.M. Ballingall, B.J. Morris, D.J. Leopold, and D.L. Rode,
Silicon autocompensation in GaAs grown by molecular-beam
epitaxy, J. Appl. Phys.
59, 3571–3573 (1986),
http://dx.doi.org/10.1063/1.336780
[19] S.S. Bose, B. Lee, M.H. Kim, G.E. Stillman, and W.I. Wang,
Influence of the substrate orientation on Si incorporation in
molecular‐beam epitaxial GaAs, J. Appl. Phys.
63(3),
743–748 (1988),
http://dx.doi.org/10.1063/1.340066
[20] K. Hess, D. Bimberg, N.O. Lipari, J.U. Fischbach, and M.
Altarelli, Band parameter determination of III–V compounds from
high-field magnetoreflectance of excitons, in:
Proceedings
of The 13th International Conference on The Physics of
Semiconductors, Rome (Tipografia Marves, Rome, 1976) pp.
142–145
[21] F.H. Stillinger, Axiomatic basis for spaces with noninteger
dimension, J. Math. Phys.
18(6), 1224–1234 (1977),
http://dx.doi.org/10.1063/1.523395
[22] J. Kundrotas, A. Čerškus, S. Ašmontas, G. Valušis, M.P.
Halsall, E. Johannessen, and P. Harrison, Impurity-induced
Huang–Rhys factor in beryllium
δ-doped GaAs/AlAs
multiple quantum wells: fractional-dimensional space approach,
Semicond. Sci. Technol.
22(9), 1–7 (2007),
http://dx.doi.org/10.1088/0268-1242/22/9/016
[23] X.F. Xe, Anisotropy and isotropy: A model of
fraction-dimensional space, Solid State Commun.
75(2),
111–114 (1990),
http://dx.doi.org/10.1016/0038-1098(90)90352-C
[24] X.F. Xe, Fractional dimensionality and fractional
derivative spectra of interband optical transitions, Phys. Rev.
B
42(18), 11751–11756 (1990),
http://dx.doi.org/10.1103/PhysRevB.42.11751
[25] X.F. Xe, Excitons in anisotropic solids: The model of
fractional-dimensional space, Phys. Rev. B
43(3),
2063–2069 (1991),
http://dx.doi.org/10.1103/PhysRevB.43.2063
[26] W.P. Dumke, Optical transitions involving impurities in
semiconductors, Phys. Rev.
132(5), 1998–2002 (1963),
http://dx.doi.org/10.1103/PhysRev.132.1998
[27] H.B. Beeb and E.W. Williams, Photoluminescence I: Theory,
in:
Semiconductors and Semimetals, Vol. 8, eds. R.K.
Willardson and A.C. Beer (Academic Press, New York, 1972) pp.
181–320,
http://www.amazon.co.uk/Semiconductors-Semimetals-Transport-Optical-Phenomena/dp/0127521089/
[28] D.M. Eagles, Optical absorption and recombination radiation
in semiconductors due to transitions between hydrogen-like
acceptor impurity levels and the conduction band, J. Phys. Chem.
Solids
16(16), 76–83 (1960),
http://dx.doi.org/10.1016/0022-3697(60)90075-5
[29] C. Klingshirn,
Semiconductor Optics, 2nd ed.
(Springer, Berlin, 2005),
http://dx.doi.org/10.1007/b138175
[30] P.K. Basu,
Theory of Optical Processes in
Semiconductors: Bulk and Microstructures (Clarendon Press,
Oxford, 1997),
http://www.amazon.co.uk/Theory-Optical-Processes-Semiconductors-Microstructures/dp/0198526202/
[31] J.H. Davies,
The Physics of Low-Dimensional
Semiconductors: An Introduction (Cambridge University
Press, New York, 1997),
http://dx.doi.org/10.1017/CBO9780511819070
[32] G. Bastard,
Wave Mechanics Applied to Semiconductor
Heterostructures (Les Edition de Physique, Les Ulis Cedex,
1990),
http://www.amazon.co.uk/Mechanics-Semiconductor-Heterostructures-Monographs-Editions/dp/0470217081/
[33] J. Singh,
Electronic and Optoelectronic Properties of
Semiconductor Structures (Cambridge University Press, New
York, 2003),
http://dx.doi.org/10.1017/CBO9780511805745
[34] D. Bimberg, H. Münzel, A. Steckenborn, and J. Christen,
Kinetics of relaxation and recombination of nonequilibrium
carriers in GaAs: Carrier capture by impurities, Phys. Rev. B
31(12),
7788–7799 (1985),
http://dx.doi.org/10.1103/PhysRevB.31.7788