[PDF]    http://dx.doi.org/10.3952/physics.v54i4.3013

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 244–255 (2014)


CHEMICAL COMPOSITION, CONCENTRATION AND SOURCE APPORTIONMENT OF ATMOSPHERIC SUBMICRON AEROSOL PARTICLES AT URBAN AND BACKGROUND SITES
Ernesta Meinorė, Jonas Šakalys, and Kęstutis Kvietkus
State Research Institute Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: ernesta.pesliakaite@gmail.com

Received 11 August 2014; revised 11 October 2014; accepted 10 December 2014

A quadrupole aerosol mass spectrometer (Q-AMS) was consecutively deployed for 6 months (March–August 2011) at an urban site (vicinity of Vilnius city) and two background sites (Rūgšteliškis, forested area; Preila, seaside area) in Lithuania. Analysis of semi-volatile non-refractory submicron aerosol particles (PM1) was based on measurements of chemical component mass concentration, assessment of long-range air masses and impact of local pollution sources on component concentration and source apportionment. A method for the quantification of nitrate and sulfate contributions to aerosol ammonium compounds was suggested, and results indicated a greater formation of ammonium nitrate than that of ammonium sulfate. The highest average mass concentration of PM1 (7.69 ± 6.83 µg m-3) was found at the Vilnius site, while at the Preila site, concentration was 2-fold lower (3.44 ± 2.65 µg m-3). Analysis of chemical compound mass concentrations in the PM1 aerosol volume indicated organics fraction as the dominant at 68.8%, 77.1% and 77.0% for the Preila, Rūgšteliškis and Vilnius sites, respectively. The concentration of nitrate fraction at the Vilnius site was 4-fold higher than the Preila site (1.84% and 7.68%, respectively) and was attributed to transport-related emissions. Results of Positive Matrix Factorization (PMF) indicated biomass burning organic aerosols (BBOA), hydrocarbon-like organic aerosols (HOA) and semi-volatile oxygenated organic aerosols (SV-OOA) at the urban site; BBOA, low-volatility oxygenated organic aerosols (LV-OOA), SV-OOA at the background forested site, and LV-OOA and SV-OOA at the background seaside site. This study examines PM1 at urban and background sites in Lithuania and suggests quantification method of ammonium-nitrate and ammonium-sulfate present in ammonium compounds from aerosol particles.
Keywords: aerosol mass spectrometry, PM1 mass concentration, chemical composition, air masses, PMF
PACS: 92.60.hg, 92.60.Mt, 92.60.Ry, 92.60.Sz

SUBMIKRONINĖS FRAKCIJOS ATMOSFEROS AEROZOLIO DALELIŲ ŠALTINIAI, CHEMINĖ SUDĖTIS IR KONCENTRACIJA MIESTO IR FONINĖSE VIETOVĖSE
Ernesta Meinorė, Jonas Šakalys, Kęstutis Kvietkus
Valstybės mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Vilniaus mieste, Rūgšteliškio ir Preilos foninėse matavimų stotyse 2011 metų kovo–rugpjūčio mėnesiais, naudojant kvadrupolinį aerozolių masės spektrometrą (Q-AMS), buvo atliekami pusiau lakių (amonio, sulfato, chloro, nitrato, organinių junginių) submikroninės frakcijos atmosferos aerozolio dalelių (PM1) koncentracijos, pasiskirstymo pagal chemines komponentes bei jų kilmės šaltinių identifikavimo tyrimai. Analizė ir vertinimas remiasi cheminių komponenčių koncentracijos matavimo rezultatais, tolimųjų pernašų duomenimis, vietinių taršos šaltinių įtaka, naudojant PMF metodą šaltinių identifikavimui. Pasiūlytas nitratų ir sulfatų kiekybinio indėlio į aerozolio dalelių amonio junginius metodas parodė, jog esant tam tikroms sąlygoms gali dominuoti amonio nitrato, o ne amonio sulfato aerozolio dalelių susidarymas. Didžiausia vidutinė PM1 koncentracija (7,69 µg m-3 ± 6,83 µg m-3) nustatyta Vilniaus mieste, tuo tarpu Preiloje koncentracija buvo perpus mažesnė (3,44 µg m-3 ± 2,65 µg m-3). Nustatyta, jog organinių junginių dalis sudarė didžiąją dalį visos pusiau lakių PM1 koncentracijos atitinkamai 68,8 %, 77,1 % ir 77,0 % Preilos, Rūgšteliškio ir Vilniaus matavimo stotyse. Pažymėtina, kad Preiloje submikroninės frakcijos aerozolio dalelių nitratų komponentės koncentracija (1,84 %) buvo 4 kartus mažesnė nei Vilniaus mieste (7,68 %), kur didžiausias nitratų šaltinis yra emisija iš transporto priemonių. Pagal PMF analizės metodą buvo identifikuoti BBOA, HOA, SV-OOA šaltiniai Vilniaus mieste ir BBOA, LV-OOA, SV-OOA miškingoje Rūgšteliškio stotyje bei LV-OOA, SV-OOA Preilos matavimų stotyje. Šiame darbe pateikiama PM1 analizė miesto ir foninėse vietovėse bei metodas amonio nitrato ir amonio sulfato kiekybinio indėlio į amonio aerozolio daleles metodas.

References / Nuorodos

[1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715–737 (2005),
http://dx.doi.org/10.5194/acp-5-715-2005
[2] J. Ovadnevaite, K. Kvietkus, A. Maršalka, 2002 summer fires in Lithuania: Impact on the Vilnius city air quality and the inhabitants health, Sci. Total Environ. 356(1–3), 11–21 (2006),
http://dx.doi.org/10.1016/j.scitotenv.2005.04.013
[3] C.P Chio and C.M. Liao, Assessment of atmospheric ultrafine carbon particle induced human health risk based on surface area dosimetry, Atmos. Environ. 42, 8575–8584 (2008),
http://dx.doi.org/10.1016/j.atmosenv.2008.08.027
[4] IPCC: Fourth assessment report: The physical science basis, working group I, Final report, Geneva, Switzerland  (2007), accessed September 2013,
http://www.ipcc.ch/ipccreports/ar4-wg1.html
[5] Y.J. Kaufman, D. Tanre, and O. Boucher, A satellite view of aerosols in the climate system, Nature 419, 215–223 (2002),
http://dx.doi.org/10.1038/nature01091
[6] Atmospheric Aerosol Properties and Climate Impacts, Synthesis and Assessment Product 2.3 Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research (2009),
http://www.geoengineeringwatch.org/documents/atmospheric-aerosol-properties-and-climate-impacts.pdf
[7] M. Hori, O. Schio, M. Naoto, and I. Sadamu, Activation capability of water soluble organic substances as CCN, J. Aerosol Sci. 34, 419–448 (2003),
http://dx.doi.org/10.1016/S0021-8502(02)00190-8
[8] P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, Changes in Atmospheric Constituents and in Radiative Forcing, in: Climate Change 2007: The Physical Science Basis, Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.B. Tignor, and H.L. Miller,  (Cambridge Univ. Press, Cambridge, UK and New York, USA, 2007), pp. 129–234,
http://www.cambridge.org/
[9] R.A. Zaveri, W.J. Shaw, D.J. Cziczo, B. Schmid, R.A. Ferrare, M.L. Alexander, M. Alexandrov, R.J. Alvarez, W.P. Arnott, D.B. Atkinson, S. Baidar, R.M. Banta, J.C. Barnard, J. Beranek, L.K. Berg, F. Brechtel, W.A. Brewer, J.F. Cahil, B. Cairns, C.D. Cappa, D. Chand, S. China, J.M. Comstock, M.K. Dubey, R.C. Easter, M.H. Erickson, J.D. Fast, C. Floerchinger, B.A. Flowers, E. Fortner, J.S. Gaffney, M.K. Gilles, K. Gorkowski, W.I. Gustafson, M. Gyawali, J. Hair, R.M. Hardesty, J.W. Harworth, S. Herndon, N. Hiranuma, C. Hostetler, J.M. Hubbe, J.T. Jayne, H. Jeong, B.T. Jobson, E.I. Kassianov, L.I. Kleinman, C. Kluzek, B. Knighton, K.R. Kolesar, C. Kuang, A. Kubatova, A.O. Langford, A. Laskin, N. Laulainen, R.D. Marchbanks, C. Mazzoleni, F. Mei, R.C. Moffet, D. Nelson, M.D. Obland, H. Oetjen, T.B. Onasch, I. Ortega, M. Ottaviani, M. Pekour, K.A. Prather, J.G. Radney, R.R. Rogers, S.P. Sandberg, A. Sedlacek, C.J. Senff, G. Senum, A. Setyan, J.E. Shilling, M. Shrivastava, C. Song, S.R. Springston, R. Subramanian, K. Suski, J. Tomlinson, R. Volkamer, H.W. Wallace, J. Wang, A.M. Weickmann, D.R. Worsnop, X.Y. Yu, A. Zelenyuk, and Q. Zhang, Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES), Atmos. Chem. Phys. 12, 7647–7687 (2012),
http://dx.doi.org/10.5194/acp-12-7647-2012
[10] J.H. Seinfeld and S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed. (John Wiley & Sons, Inc., New York, 2006),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471720186.html
[11] A.L. Robinson, N.M. Donahue, M.K. Shrivastava, E.A. Weitkamp, A.M. Sage, A.P. Grieshop, T.E. Lane, J.R. Pierce, and S.N. Pandis, Rethinking organic aerosols: Semivolatile emissions and photochemical aging, Science 315, 1259–1262 (2007),
http://dx.doi.org/10.1126/science.1133061
[12] M. Dall'Osto, and R.M. Harrison, Urban organic aerosols measured by single particle mass spectrometry in the megacity of London, Atmos. Chem. Phys. 12, 4127–4142 (2012),
http://dx.doi.org/10.5194/acp-12-4127-2012
[13] A.H. Goldstein, D.R. Worton, B.J. Williams, S.V. Hering, N.M. Kreisberg, O. Panic, and T. Gorecki, Thermal desorption comprehensive two-dimensional gas chromatography for in-situ measurements of organic aerosols, J. Chromatogr. 1186, 340–347 (2008),
http://dx.doi.org/10.1016/j.chroma.2007.09.094
[14] M. Hallquist, J.C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N.M. Donahue, C. George, A.H. Goldstein, J.F. Hamilton, H. Herrmann, T.Hoffmann, Y. Iinuma, M. Jang, M.E. Jenkin, J.L. Jimenez, A. Kiendler-Scharr, W. Maenhaut, G. McFiggans, Th.F. Mentel, A. Monod, A.S.H. Prevot, J.H. Seinfeld, J.D. Surratt, R. Szmigielski, and J. Wildt, The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys. 9, 5155–5236 (2009),
http://dx.doi.org/10.5194/acp-9-5155-2009
[15] M. Kanakidou, J.H. Seinfeld, S.N. Pandis, I. Barnes, F.J. Dentener, M.C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C.J. Nielsen, E. Swietlicki, J.P. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G.K. Moortgat, R. Winterhalter, C.E.L. Myhre, K. Tsigaridis, E. Vignati, E. G. Stephanou, and J. Wilson, Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys. 5, 1053–1123 (2005),
http://dx.doi.org/10.5194/acp-5-1053-2005
[16] Q. Zhang, J.L. Jimenez, M.R. Canagaratna, J.D. Allan, H. Coe, I. Ulbrich, M.R. Alfarra,, A. Takami, A. M. Middlebrook, Y.L. Sun, K. Dzepina, E. Dunlea, K. Docherty, P. F. DeCarlo, D. Salcedo, T. Onasch, J.T. Jayne, T. Miyoshi, A. Shimono, S. Hatakeyama, N. Takegawa, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, P. Williams, K. Bower, R. Bahreini, L. Cottrell, R.J. Griffin, J. Rautiainen, J.Y. Sun, Y.M. Zhang, and D.R. Worsnop, Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett. 34, L13801 (2007),
http://dx.doi.org/10.1029/2007GL029979
[17] J.L. Jimenez, M.R. Canagaratna, N.M. Donahue, A.S.H. Prevot, Q. Zhang, J.H. Kroll, P.F. DeCarlo, J.D. Allan, H. Coe, N.L. Ng, A.C. Aiken, K.D. Docherty, I.M. Ulbrich, A.P. Grieshop, A.L. Robinson, J. Duplissy, J.D. Smith, K.R. Wilson, V.A. Lanz, C. Hueglin, Y.L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J.M. Tomlinson, D.R. Collins, M.J. Cubison, E.J. Dunlea, J.A. Huffman, T.B. Onasch, M.R. Alfarra, P.I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J.Y. Sun, Y.M. Zhang, K. Dzepina, J.R. Kimmel, D. Sueper, J.T. Jayne, S.C. Herndon, A.M. Trimborn, L.R. Williams, E.C. Wood, C.E. Kolb, A.M. Middlebrook, U. Baltensperger, and D. R. Worsnop, Evolution  of organic aerosols in the atmosphere, Science 326, 1525–1529 (2009),
http://dx.doi.org/10.1126/science.1180353
[18] K. Kvietkus, J. Šakalys, I. Rimšelytė, J. Ovadnevaitė, V. Remeikis, and V. Špakauskas, Characterization of aerosols sources at urban and background sites in Lithuania, Lith. J. Phys. 51, 65–74 (2011),
http://dx.doi.org/10.3952/lithjphys.51106
[19] I. Rimšelytė, J. Ovadnevaitė, D. Čeburnis, K. Kvietkus, and E. Pesliakaitė, Chemical composition and size distribution of fine aerosol particles on the east coast of the Baltic Sea, Lith. J. Phys. 47(4), 523–529 (2007),
http://dx.doi.org/10.3952/lithjphys.47425
[20] I. Garbariene, K. Kvietkus, J. Šakalys, J. Ovadnevaitė, and D. Čeburnis, Biogenic and anthropogenic organic matter in aerosol over continental Europe: source characterization in the east Baltic region. J. Atmos. Chem. 69, 159–174 (2012),
http://dx.doi.org/10.1007/s10874-012-9232-7
[21] J. Ovadnevaite, D. Ceburnis, K. Plauskaite-Sukiene, R. Modini, R. Dupuy, I. Rimselyte, M. Ramonet, K. Kvietkus, Z. Ristovski, H. Berresheim, and C.D. O'Dowd, Volcanic sulphate and arctic dust plumes over the North Atlantic Ocean, Atmos. Environ. 43, 4968–4974 (2009),
http://dx.doi.org/10.1016/j.atmosenv.2009.07.007
[22] P. Liu, P.J. Ziemann, D.B. Kittelson, and P.H. Mc-Murry, Generating particle beams of controlled dimensions and divergence: I. Theory of particle motion in aerodynamic lenses and nozzle expansions, Aerosol Sci. Technol. 22, 293–313 (1995),
http://dx.doi.org/10.1080/02786829408959748
[23] M.R. Canagaratna, J.T. Jayne, J.L. Jimenez, J.D. Allan, M.R. Alfarra, Q. Zhang, T.B. Onasch, F. Drewnick, H. Coe, A. Middlebrook, A. Delia, L.R. Williams, A.M. Trimborn, M.J. Northway, P.F. DeCarlo, C.E. Kolb, P. Davidovits, and D.R. Worsnop, Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, Mass Spectrom. Rev. 26(2), 185–222 (2007),
http://dx.doi.org/10.1002/mas.20115
[24] J.T. Jayne, D.C. Leard, X.F. Zhang, P. Davidovits, K.A. Smith, C.E. Kolb, and D.R. Worsnop, Development of an aerosol mass spectrometer for size and composition analysis of submicron particles, Aerosol Sci. Technol. 33, 49–70 (2000),
http://dx.doi.org/10.1080/027868200410840
[25] A. Middlebrook and R. Bahreini, Applying Laboratory Collection Efficiencies to Ambient Field Data, AMS Users' Meeting 2008 (2008),
http://cires.colorado.edu/jimenez-group/UsrMtgs/UsersMtg9/09_Middlebrook_CE.pdf
[26] R.R. Draxler and G.D. Rolph, HYSPLIT – Hybrid Single Particle Lagrangian Integrated Trajectory – Model access via NOAA ARL READY Website, NOAA Air Resources Laboratory, College Park, MD, accessed September 2013 (2013),
http://www.arl.noaa.gov/HYSPLIT.php
[27] K. Kvietkus, J. Šakalys, J. Didžbalis, I. Garbarienė, N. Špirkauskaitė, and V. Remeikis, Atmospheric aerosol episodes over Lithuania after the May 2011 volcano eruption at Grimsvötn, Iceland, Atmos. Res. 122, 93–101 (2012),
http://dx.doi.org/10.1016/j.atmosres.2012.10.014
[28] P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics 5, 111–126 (1994),
http://dx.doi.org/10.1002/env.3170050203
[29] P. Paatero, Least squares formulation of robust, non-negative factor analysis, Chemom. Intell. Lab. Sys. 37, 23–35 (1997),
http://dx.doi.org/10.1016/S0169-7439(96)00044-5
[30] I.M. Ulbrich, M.R. Canagaratna, Q. Zhang, D.R. Worsnop, and J.L. Jimenez, Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys. 9, 2891–2918 (2009),
http://dx.doi.org/10.5194/acp-9-2891-2009
[31] B. Gantt, N. Meskhidze, M.C. Facchini, M. Rinaldi, D. Ceburnis, and C.D. O'Dowd, Wind speed dependent size-resolved parameterization for the organic mass fraction of sea spray aerosol, Atmos. Chem. Phys. 11, 8777–8790 (2011),
http://dx.doi.org/10.5194/acp-11-8777-2011
[32] E. Finessi, S. Decesari, M. Paglione, L. Giulianelli, C. Carbone, S. Gilardoni, S. Fuzzi, S. Saarikoski, T. Raatikainen, R. Hillamo, J. Allan, Th.F. Mentel, P. Tiitta, A. Laaksonen, T. Petäjä, M. Kulmala, D.R. Worsnop, and M.C. Facchini, Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy, Atmos. Chem. Phys. 12, 941–959 (2012),
http://dx.doi.org/10.5194/acp-12-941-2012
[33] M. Dall'Osto, R.M. Harrison, D.C.S. Beddows, E.J. Freney, M.R. Heal, and R.J. Donovan, Single-particle detection efficiencies of aerosol time-of-flight mass spectrometry during the North Atlantic marine boundary layer experiment, Environ. Sci. Technol. 40, 5029–5035 (2006),
http://dx.doi.org/10.1021/es050951i
[34] C. O'Dowd, D. Ceburnis, J. Ovadnevaite, G. Martucci, J. Bialek, C. Monahan, H. Berresheim, A. Vaishya, T. Grigas, S.G. Jennings, P. McVeigh, S. Varghese, R. Flanagan, D. Martin, E. Moran, K. Lambkin, T. Semmler, C. Perrino, and R. McGrath, The Eyjafjallajökull ash plume – Part I: Physical, chemical and optical characteristics, Atmos. Environ. 48, 129–142 (2011),
http://dx.doi.org/10.1016/j.atmosenv.2011.07.004
[35] J.H. Seinfeld and S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley-Interscience, New York, 1998)
[36] J.H. Seinfeld, G.B. Erdakos, W.E. Asher, and J.F. Pankow, Modeling the formation of secondary organic aerosol (SOA). 2. The predicted effects of relative humidity on aerosol formation in the α\alpha\alpa-pinene-, β\beta-pinene-, sabinene-, Δ3\Delta^3-carene-, and cyclohexene-ozone systems, Environ. Sci. Technol. 35(9), 1806–1817 (2001),
http://dx.doi.org/10.1021/es001765+
[37] C.J. Henningan, M.H. Bergin, J.E. Dibb, and R.J. Weber, Enhanced secondary organic aerosol formation due to water uptake by fine particles, Geophys. Res. Lett. 35(18), L18801 (2008),
http://dx.doi.org/10.1029/2008GL035046
[38] B.K. Pun and C. Seigneur, Investigative modeling of new pathways for secondary organic aerosol formation, Atmos. Chem. Phys. 7, 2199–2216 (2007),
http://dx.doi.org/10.5194/acp-7-2199-2007
[39] H.H. Du, L.D. Kong, T.T. Cheng, J.M. Chen, X. Yang, R.Y. Zhang, Z.W. Han, Z. Yan, and Y.L. Ma, Insights into ammonium particle-to-gas conversion: non-sulfate ammonium coupling with nitrate and chloride, Aerosol Air Qual. Res. 10, 589–595 (2010),
http://aaqr.org/VOL10_No6_December2010/8_AAQR-10-04-OA-0034_589-595.pdf
[40] C. O'Dowd, G. McFiggans, D.J. Creasey, L. Pirjola, C. Hoell, M.H. Smith, B. Allan, J.M.C. Plane, D.E. Heard, J.D. Lee, M.J. Pilling, and M. Kulmala, On the photochemical production of new particles in the coastal boundary layer, Geophys. Res. Lett. 26, 1707–1710 (1999),
http://dx.doi.org/10.1029/1999GL900335
[41] J.A. Neuman, J.B. Nowak, C.A. Brock, M.Trainer, F.C. Fehsenfeld, J.S. Holloway, G. Hubler, P.K. Hudson, D.M. Murphy, D.K. Nicks, D. Orsini, D.D. Parrish, T.B. Ryerson, D.T. Sueper, A. Sullivan, and R. Weber, Variability in ammonium nitrate formation and nitric acid depletion with altitude and location over California, J. Geophys. Res. 108(D17), 4557 (2003),
http://dx.doi.org/10.1029/2003JD003616
[42] J. Merikanto, I. Napari, H. Vehkamaki, T. Anttila, and M. Kulmala, New parameterization of sulfuric acid-ammonia-water ternary nucleation rates at tropospheric conditions, J. Geophys. Res. 112, D15207 (2007),
http://dx.doi.org/10.1029/2006JD007977
[43] J. Kirkby, J. Curtius, Almeida, E. Dunne, J. Duplissy, S. Ehrhart, A. Franchin, S. Gagné, L. Ickes, A. Kürten, A. Kupc, A. Metzger, R. Riccobono, L. Rondo, S. Schobesberger, G. Tsagkogeorgas, D. Wimmer, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, Dommen, J.A. Downard, M. Ehn, R.C. Flagan, S. Haider, A. Hansel, D. Hauser, W. Jud, H. Junninen, F. Kreissl, A. Kvashin, A. Laaksonen, K. Lehtipalo, J. Lima, E.R. Lovejoy, V. Makhmutov, S. Mathot, J. Mikkilä, P. Minginette, S. Mogo, T. Nieminen, A. Onnela, P. Pereira, T. Petäjä, R. Schnitzhofer, J.H. Seinfeld, M. Sipilä, Y. Stozhkov, F. Stratmann, A. Tomé, J. Vanhanen, Y. Viisanen, A. Vrtala, P.E. Wagner, H. Walther, E. Weingartner, H. Wex, P.M. Winkler, K.S. Carslaw, D.R. Worsnop, U. Baltensperger, and M. Kulmala, Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, Nature 476, 429–433 (2011),
http://dx.doi.org/10.1038/nature10343
[44] L. Xu, and J.E. Penner, Global simulations of nitrate and ammonium aerosols and their radiative effects, Atmos. Chem. Phys. 12, 9479–9504 (2012),
http://dx.doi.org/10.5194/acp-12-9479-2012
[45] N.L. Ng, M.R. Canagaratna, J.L. Jimenez, Q. Zhang, I.M. Ulbrich, and R. Worsnop, Real-time methods for estimating organic component mass concentrations from aerosol mass spectrometer data, Environ. Sci. Technol. 45, 910–916 (2011),
http://dx.doi.org/10.1021/es102951k
[46] J. Ovadnevaite, D. Ceburnis, M.R. Canagaratna, H. Berresheim, J. Bialek, G. Martucci, D. R. Worsnop, and C.D. O'Dowd, On the effect of wind speed on submicron sea salt mass concentrations and source fluxes, J. Geophys. Res. 117(D16), D16201 (2012),
http://dx.doi.org/10.1029/2011JD017379