Vilniaus mieste, Rūgšteliškio ir
Preilos foninėse matavimų stotyse 2011 metų kovo–rugpjūčio
mėnesiais, naudojant kvadrupolinį aerozolių masės spektrometrą
(Q-AMS), buvo atliekami pusiau lakių (amonio, sulfato, chloro,
nitrato, organinių junginių) submikroninės frakcijos atmosferos
aerozolio dalelių (PM1) koncentracijos, pasiskirstymo pagal
chemines komponentes bei jų kilmės šaltinių identifikavimo
tyrimai. Analizė ir vertinimas remiasi cheminių komponenčių
koncentracijos matavimo rezultatais, tolimųjų pernašų duomenimis,
vietinių taršos šaltinių įtaka, naudojant PMF metodą šaltinių
identifikavimui. Pasiūlytas nitratų ir sulfatų kiekybinio indėlio
į aerozolio dalelių amonio junginius metodas parodė, jog esant tam
tikroms sąlygoms gali dominuoti amonio nitrato, o ne amonio
sulfato aerozolio dalelių susidarymas. Didžiausia vidutinė PM1
koncentracija (7,69 µg m-3 ± 6,83 µg m-3)
nustatyta Vilniaus mieste, tuo tarpu Preiloje koncentracija buvo
perpus mažesnė (3,44 µg m-3 ± 2,65 µg m-3).
Nustatyta, jog organinių junginių dalis sudarė didžiąją dalį visos
pusiau lakių PM1 koncentracijos atitinkamai 68,8 %, 77,1 % ir 77,0
% Preilos, Rūgšteliškio ir Vilniaus matavimo stotyse. Pažymėtina,
kad Preiloje submikroninės frakcijos aerozolio dalelių nitratų
komponentės koncentracija (1,84 %) buvo 4 kartus mažesnė nei
Vilniaus mieste (7,68 %), kur didžiausias nitratų šaltinis yra
emisija iš transporto priemonių. Pagal PMF analizės metodą buvo
identifikuoti BBOA, HOA, SV-OOA šaltiniai Vilniaus mieste ir BBOA,
LV-OOA, SV-OOA miškingoje Rūgšteliškio stotyje bei LV-OOA, SV-OOA
Preilos matavimų stotyje. Šiame darbe pateikiama PM1 analizė
miesto ir foninėse vietovėse bei metodas amonio nitrato ir amonio
sulfato kiekybinio indėlio į amonio aerozolio daleles metodas.
References
/ Nuorodos
[1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a
review, Atmos. Chem. Phys.
5, 715–737 (2005),
http://dx.doi.org/10.5194/acp-5-715-2005
[2] J. Ovadnevaite, K. Kvietkus, A. Maršalka, 2002 summer fires in
Lithuania: Impact on the Vilnius city air quality and the
inhabitants health, Sci. Total Environ.
356(1–3), 11–21
(2006),
http://dx.doi.org/10.1016/j.scitotenv.2005.04.013
[3] C.P Chio and C.M. Liao, Assessment of atmospheric ultrafine
carbon particle induced human health risk based on surface area
dosimetry, Atmos. Environ.
42, 8575–8584 (2008),
http://dx.doi.org/10.1016/j.atmosenv.2008.08.027
[4] IPCC: Fourth assessment report: The physical science basis,
working group I, Final report, Geneva, Switzerland (2007),
accessed September 2013,
http://www.ipcc.ch/ipccreports/ar4-wg1.html
[5] Y.J. Kaufman, D. Tanre, and O. Boucher, A satellite view of
aerosols in the climate system, Nature
419, 215–223
(2002),
http://dx.doi.org/10.1038/nature01091
[6]
Atmospheric Aerosol Properties and Climate Impacts,
Synthesis and Assessment Product 2.3 Report by the U.S. Climate
Change Science Program and the Subcommittee on Global Change
Research (2009),
http://www.geoengineeringwatch.org/documents/atmospheric-aerosol-properties-and-climate-impacts.pdf
[7] M. Hori, O. Schio, M. Naoto, and I. Sadamu, Activation
capability of water soluble organic substances as CCN, J. Aerosol
Sci.
34, 419–448 (2003),
http://dx.doi.org/10.1016/S0021-8502(02)00190-8
[8] P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts,
D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga,
R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, Changes in
Atmospheric Constituents and in Radiative Forcing, in:
Climate
Change 2007: The Physical Science Basis, Working Group I
Contribution to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change, eds. S. Solomon,
D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.B. Tignor,
and H.L. Miller, (Cambridge Univ. Press, Cambridge, UK and
New York, USA, 2007), pp. 129–234,
http://www.cambridge.org/
[9] R.A. Zaveri, W.J. Shaw, D.J. Cziczo, B. Schmid, R.A. Ferrare,
M.L. Alexander, M. Alexandrov, R.J. Alvarez, W.P. Arnott, D.B.
Atkinson, S. Baidar, R.M. Banta, J.C. Barnard, J. Beranek, L.K.
Berg, F. Brechtel, W.A. Brewer, J.F. Cahil, B. Cairns, C.D. Cappa,
D. Chand, S. China, J.M. Comstock, M.K. Dubey, R.C. Easter, M.H.
Erickson, J.D. Fast, C. Floerchinger, B.A. Flowers, E. Fortner,
J.S. Gaffney, M.K. Gilles, K. Gorkowski, W.I. Gustafson, M.
Gyawali, J. Hair, R.M. Hardesty, J.W. Harworth, S. Herndon, N.
Hiranuma, C. Hostetler, J.M. Hubbe, J.T. Jayne, H. Jeong, B.T.
Jobson, E.I. Kassianov, L.I. Kleinman, C. Kluzek, B. Knighton,
K.R. Kolesar, C. Kuang, A. Kubatova, A.O. Langford, A. Laskin, N.
Laulainen, R.D. Marchbanks, C. Mazzoleni, F. Mei, R.C. Moffet, D.
Nelson, M.D. Obland, H. Oetjen, T.B. Onasch, I. Ortega, M.
Ottaviani, M. Pekour, K.A. Prather, J.G. Radney, R.R. Rogers, S.P.
Sandberg, A. Sedlacek, C.J. Senff, G. Senum, A. Setyan, J.E.
Shilling, M. Shrivastava, C. Song, S.R. Springston, R.
Subramanian, K. Suski, J. Tomlinson, R. Volkamer, H.W. Wallace, J.
Wang, A.M. Weickmann, D.R. Worsnop, X.Y. Yu, A. Zelenyuk, and Q.
Zhang, Overview of the 2010 Carbonaceous Aerosols and Radiative
Effects Study (CARES), Atmos. Chem. Phys.
12, 7647–7687
(2012),
http://dx.doi.org/10.5194/acp-12-7647-2012
[10] J.H. Seinfeld and S.N. Pandis,
Atmospheric Chemistry and
Physics: From Air Pollution to Climate Change, 2nd ed. (John
Wiley & Sons, Inc., New York, 2006),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471720186.html
[11] A.L. Robinson, N.M. Donahue, M.K. Shrivastava, E.A. Weitkamp,
A.M. Sage, A.P. Grieshop, T.E. Lane, J.R. Pierce, and S.N. Pandis,
Rethinking organic aerosols: Semivolatile emissions and
photochemical aging, Science
315, 1259–1262 (2007),
http://dx.doi.org/10.1126/science.1133061
[12] M. Dall'Osto, and R.M. Harrison, Urban organic aerosols
measured by single particle mass spectrometry in the megacity of
London, Atmos. Chem. Phys.
12, 4127–4142 (2012),
http://dx.doi.org/10.5194/acp-12-4127-2012
[13] A.H. Goldstein, D.R. Worton, B.J. Williams, S.V. Hering, N.M.
Kreisberg, O. Panic, and T. Gorecki, Thermal desorption
comprehensive two-dimensional gas chromatography for in-situ
measurements of organic aerosols, J. Chromatogr.
1186,
340–347 (2008),
http://dx.doi.org/10.1016/j.chroma.2007.09.094
[14] M. Hallquist, J.C. Wenger, U. Baltensperger, Y. Rudich, D.
Simpson, M. Claeys, J. Dommen, N.M. Donahue, C. George, A.H.
Goldstein, J.F. Hamilton, H. Herrmann, T.Hoffmann, Y. Iinuma, M.
Jang, M.E. Jenkin, J.L. Jimenez, A. Kiendler-Scharr, W. Maenhaut,
G. McFiggans, Th.F. Mentel, A. Monod, A.S.H. Prevot, J.H.
Seinfeld, J.D. Surratt, R. Szmigielski, and J. Wildt, The
formation, properties and impact of secondary organic aerosol:
current and emerging issues, Atmos. Chem. Phys.
9,
5155–5236 (2009),
http://dx.doi.org/10.5194/acp-9-5155-2009
[15] M. Kanakidou, J.H. Seinfeld, S.N. Pandis, I. Barnes, F.J.
Dentener, M.C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes,
C.J. Nielsen, E. Swietlicki, J.P. Putaud, Y. Balkanski, S. Fuzzi,
J. Horth, G.K. Moortgat, R. Winterhalter, C.E.L. Myhre, K.
Tsigaridis, E. Vignati, E. G. Stephanou, and J. Wilson, Organic
aerosol and global climate modelling: a review, Atmos. Chem. Phys.
5, 1053–1123 (2005),
http://dx.doi.org/10.5194/acp-5-1053-2005
[16] Q. Zhang, J.L. Jimenez, M.R. Canagaratna, J.D. Allan, H. Coe,
I. Ulbrich, M.R. Alfarra,, A. Takami, A. M. Middlebrook, Y.L. Sun,
K. Dzepina, E. Dunlea, K. Docherty, P. F. DeCarlo, D. Salcedo, T.
Onasch, J.T. Jayne, T. Miyoshi, A. Shimono, S. Hatakeyama, N.
Takegawa, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S.
Weimer, K. Demerjian, P. Williams, K. Bower, R. Bahreini, L.
Cottrell, R.J. Griffin, J. Rautiainen, J.Y. Sun, Y.M. Zhang, and
D.R. Worsnop, Ubiquity and dominance of oxygenated species in
organic aerosols in anthropogenically-influenced Northern
Hemisphere midlatitudes, Geophys. Res. Lett.
34, L13801
(2007),
http://dx.doi.org/10.1029/2007GL029979
[17] J.L. Jimenez, M.R. Canagaratna, N.M. Donahue, A.S.H. Prevot,
Q. Zhang, J.H. Kroll, P.F. DeCarlo, J.D. Allan, H. Coe, N.L. Ng,
A.C. Aiken, K.D. Docherty, I.M. Ulbrich, A.P. Grieshop, A.L.
Robinson, J. Duplissy, J.D. Smith, K.R. Wilson, V.A. Lanz, C.
Hueglin, Y.L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J.
Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J.M. Tomlinson,
D.R. Collins, M.J. Cubison, E.J. Dunlea, J.A. Huffman, T.B.
Onasch, M.R. Alfarra, P.I. Williams, K. Bower, Y. Kondo, J.
Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D.
Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S.
Hatakeyama, A. Shimono, J.Y. Sun, Y.M. Zhang, K. Dzepina, J.R.
Kimmel, D. Sueper, J.T. Jayne, S.C. Herndon, A.M. Trimborn, L.R.
Williams, E.C. Wood, C.E. Kolb, A.M. Middlebrook, U.
Baltensperger, and D. R. Worsnop, Evolution
of organic aerosols in the atmosphere, Science
326,
1525–1529 (2009),
http://dx.doi.org/10.1126/science.1180353
[18] K. Kvietkus, J. Šakalys, I. Rimšelytė, J. Ovadnevaitė, V.
Remeikis, and V. Špakauskas, Characterization of aerosols sources
at urban and background sites in Lithuania, Lith. J. Phys.
51,
65–74 (2011),
http://dx.doi.org/10.3952/lithjphys.51106
[19] I. Rimšelytė, J. Ovadnevaitė, D. Čeburnis, K. Kvietkus, and
E. Pesliakaitė, Chemical composition and size distribution of fine
aerosol particles on the east coast of the Baltic Sea, Lith. J.
Phys.
47(4), 523–529 (2007),
http://dx.doi.org/10.3952/lithjphys.47425
[20] I. Garbariene, K. Kvietkus, J. Šakalys, J. Ovadnevaitė, and
D. Čeburnis, Biogenic and anthropogenic organic matter in aerosol
over continental Europe: source characterization in the east
Baltic region. J. Atmos. Chem.
69, 159–174 (2012),
http://dx.doi.org/10.1007/s10874-012-9232-7
[21] J. Ovadnevaite, D. Ceburnis, K. Plauskaite-Sukiene, R.
Modini, R. Dupuy, I. Rimselyte, M. Ramonet, K. Kvietkus, Z.
Ristovski, H. Berresheim, and C.D. O'Dowd, Volcanic sulphate and
arctic dust plumes over the North Atlantic Ocean, Atmos. Environ.
43, 4968–4974 (2009),
http://dx.doi.org/10.1016/j.atmosenv.2009.07.007
[22] P. Liu, P.J. Ziemann, D.B. Kittelson, and P.H. Mc-Murry,
Generating particle beams of controlled dimensions and divergence:
I. Theory of particle motion in aerodynamic lenses and nozzle
expansions, Aerosol Sci. Technol.
22, 293–313 (1995),
http://dx.doi.org/10.1080/02786829408959748
[23] M.R. Canagaratna, J.T. Jayne, J.L. Jimenez, J.D. Allan, M.R.
Alfarra, Q. Zhang, T.B. Onasch, F. Drewnick, H. Coe, A.
Middlebrook, A. Delia, L.R. Williams, A.M. Trimborn, M.J.
Northway, P.F. DeCarlo, C.E. Kolb, P. Davidovits, and D.R.
Worsnop, Chemical and microphysical characterization of ambient
aerosols with the aerodyne aerosol mass spectrometer, Mass
Spectrom. Rev.
26(2), 185–222 (2007),
http://dx.doi.org/10.1002/mas.20115
[24] J.T. Jayne, D.C. Leard, X.F. Zhang, P. Davidovits, K.A.
Smith, C.E. Kolb, and D.R. Worsnop, Development of an aerosol mass
spectrometer for size and composition analysis of submicron
particles, Aerosol Sci. Technol.
33, 49–70 (2000),
http://dx.doi.org/10.1080/027868200410840
[25] A. Middlebrook and R. Bahreini,
Applying Laboratory
Collection Efficiencies to Ambient Field Data, AMS Users'
Meeting 2008 (2008),
http://cires.colorado.edu/jimenez-group/UsrMtgs/UsersMtg9/09_Middlebrook_CE.pdf
[26] R.R. Draxler and G.D. Rolph, HYSPLIT – Hybrid Single Particle
Lagrangian Integrated Trajectory – Model access via NOAA ARL READY
Website, NOAA Air Resources Laboratory, College Park, MD, accessed
September 2013 (2013),
http://www.arl.noaa.gov/HYSPLIT.php
[27] K. Kvietkus, J. Šakalys, J. Didžbalis, I. Garbarienė, N.
Špirkauskaitė, and V. Remeikis, Atmospheric aerosol episodes over
Lithuania after the May 2011 volcano eruption at Grimsvötn,
Iceland, Atmos. Res.
122, 93–101 (2012),
http://dx.doi.org/10.1016/j.atmosres.2012.10.014
[28] P. Paatero and U. Tapper, Positive matrix factorization: A
non-negative factor model with optimal utilization of error
estimates of data values, Environmetrics
5, 111–126
(1994),
http://dx.doi.org/10.1002/env.3170050203
[29] P. Paatero, Least squares formulation of robust, non-negative
factor analysis, Chemom. Intell. Lab. Sys.
37, 23–35
(1997),
http://dx.doi.org/10.1016/S0169-7439(96)00044-5
[30] I.M. Ulbrich, M.R. Canagaratna, Q. Zhang, D.R. Worsnop, and
J.L. Jimenez, Interpretation of organic components from Positive
Matrix Factorization of aerosol mass spectrometric data, Atmos.
Chem. Phys.
9, 2891–2918 (2009),
http://dx.doi.org/10.5194/acp-9-2891-2009
[31] B. Gantt, N. Meskhidze, M.C. Facchini, M. Rinaldi, D.
Ceburnis, and C.D. O'Dowd, Wind speed dependent size-resolved
parameterization for the organic mass fraction of sea spray
aerosol, Atmos. Chem. Phys.
11, 8777–8790 (2011),
http://dx.doi.org/10.5194/acp-11-8777-2011
[32] E. Finessi, S. Decesari, M. Paglione, L. Giulianelli, C.
Carbone, S. Gilardoni, S. Fuzzi, S. Saarikoski, T. Raatikainen, R.
Hillamo, J. Allan, Th.F. Mentel, P. Tiitta, A. Laaksonen, T.
Petäjä, M. Kulmala, D.R. Worsnop, and M.C. Facchini, Determination
of the biogenic secondary organic aerosol fraction in the boreal
forest by NMR spectroscopy, Atmos. Chem. Phys.
12, 941–959
(2012),
http://dx.doi.org/10.5194/acp-12-941-2012
[33] M. Dall'Osto, R.M. Harrison, D.C.S. Beddows, E.J. Freney,
M.R. Heal, and R.J. Donovan, Single-particle detection
efficiencies of aerosol time-of-flight mass spectrometry during
the North Atlantic marine boundary layer experiment, Environ. Sci.
Technol.
40, 5029–5035 (2006),
http://dx.doi.org/10.1021/es050951i
[34] C. O'Dowd, D. Ceburnis, J. Ovadnevaite, G. Martucci, J.
Bialek, C. Monahan, H. Berresheim, A. Vaishya, T. Grigas, S.G.
Jennings, P. McVeigh, S. Varghese, R. Flanagan, D. Martin, E.
Moran, K. Lambkin, T. Semmler, C. Perrino, and R. McGrath, The
Eyjafjallajökull ash plume – Part I: Physical, chemical and
optical characteristics, Atmos. Environ.
48, 129–142
(2011),
http://dx.doi.org/10.1016/j.atmosenv.2011.07.004
[35] J.H. Seinfeld and S.N. Pandis,
Atmospheric Chemistry and
Physics: From Air Pollution to Climate Change
(Wiley-Interscience, New York, 1998)
[36] J.H. Seinfeld, G.B. Erdakos, W.E. Asher, and J.F. Pankow,
Modeling the formation of secondary organic aerosol (SOA). 2. The
predicted effects of relative humidity on aerosol formation in
the
-pinene-,
β\beta-pinene-,
sabinene-,
Δ3\Delta^3-carene-,
and cyclohexene-ozone systems, Environ. Sci. Technol.
35(9),
1806–1817 (2001),
http://dx.doi.org/10.1021/es001765+
[37] C.J. Henningan, M.H. Bergin, J.E. Dibb, and R.J. Weber,
Enhanced secondary organic aerosol formation due to water uptake
by fine particles, Geophys. Res. Lett.
35(18), L18801
(2008),
http://dx.doi.org/10.1029/2008GL035046
[38] B.K. Pun and C. Seigneur, Investigative modeling of new
pathways for secondary organic aerosol formation, Atmos. Chem.
Phys.
7, 2199–2216 (2007),
http://dx.doi.org/10.5194/acp-7-2199-2007
[39] H.H. Du, L.D. Kong, T.T. Cheng, J.M. Chen, X. Yang, R.Y.
Zhang, Z.W. Han, Z. Yan, and Y.L. Ma, Insights into ammonium
particle-to-gas conversion: non-sulfate ammonium coupling with
nitrate and chloride, Aerosol Air Qual. Res.
10, 589–595
(2010),
http://aaqr.org/VOL10_No6_December2010/8_AAQR-10-04-OA-0034_589-595.pdf
[40] C. O'Dowd, G. McFiggans, D.J. Creasey, L. Pirjola, C. Hoell,
M.H. Smith, B. Allan, J.M.C. Plane, D.E. Heard, J.D. Lee, M.J.
Pilling, and M. Kulmala, On the photochemical production of new
particles in the coastal boundary layer, Geophys. Res. Lett.
26,
1707–1710 (1999),
http://dx.doi.org/10.1029/1999GL900335
[41] J.A. Neuman, J.B. Nowak, C.A. Brock, M.Trainer, F.C.
Fehsenfeld, J.S. Holloway, G. Hubler, P.K. Hudson, D.M. Murphy,
D.K. Nicks, D. Orsini, D.D. Parrish, T.B. Ryerson, D.T. Sueper, A.
Sullivan, and R. Weber, Variability in ammonium nitrate formation
and nitric acid depletion with altitude and location over
California, J. Geophys. Res.
108(D17), 4557 (2003),
http://dx.doi.org/10.1029/2003JD003616
[42] J. Merikanto, I. Napari, H. Vehkamaki, T. Anttila, and M.
Kulmala, New parameterization of sulfuric acid-ammonia-water
ternary nucleation rates at tropospheric conditions, J. Geophys.
Res.
112, D15207 (2007),
http://dx.doi.org/10.1029/2006JD007977
[43] J. Kirkby, J. Curtius, Almeida, E. Dunne, J. Duplissy, S.
Ehrhart, A. Franchin, S. Gagné, L. Ickes, A. Kürten, A. Kupc, A.
Metzger, R. Riccobono, L. Rondo, S. Schobesberger, G.
Tsagkogeorgas, D. Wimmer, A. Amorim, F. Bianchi, M.
Breitenlechner, A. David, Dommen, J.A. Downard, M. Ehn, R.C.
Flagan, S. Haider, A. Hansel, D. Hauser, W. Jud, H. Junninen, F.
Kreissl, A. Kvashin, A. Laaksonen, K. Lehtipalo, J. Lima, E.R.
Lovejoy, V. Makhmutov, S. Mathot, J. Mikkilä, P. Minginette, S.
Mogo, T. Nieminen, A. Onnela, P. Pereira, T. Petäjä, R.
Schnitzhofer, J.H. Seinfeld, M. Sipilä, Y. Stozhkov, F. Stratmann,
A. Tomé, J. Vanhanen, Y. Viisanen, A. Vrtala, P.E. Wagner, H.
Walther, E. Weingartner, H. Wex, P.M. Winkler, K.S. Carslaw, D.R.
Worsnop, U. Baltensperger, and M. Kulmala, Role of sulphuric acid,
ammonia and galactic cosmic rays in atmospheric aerosol
nucleation, Nature
476, 429–433 (2011),
http://dx.doi.org/10.1038/nature10343
[44] L. Xu, and J.E. Penner, Global simulations of nitrate and
ammonium aerosols and their radiative effects, Atmos. Chem. Phys.
12, 9479–9504 (2012),
http://dx.doi.org/10.5194/acp-12-9479-2012
[45] N.L. Ng, M.R. Canagaratna, J.L. Jimenez, Q. Zhang, I.M.
Ulbrich, and R. Worsnop, Real-time methods for estimating organic
component mass concentrations from aerosol mass spectrometer data,
Environ. Sci. Technol.
45, 910–916 (2011),
http://dx.doi.org/10.1021/es102951k
[46] J. Ovadnevaite, D. Ceburnis, M.R. Canagaratna, H. Berresheim,
J. Bialek, G. Martucci, D. R. Worsnop, and C.D. O'Dowd, On the
effect of wind speed on submicron sea salt mass concentrations and
source fluxes, J. Geophys. Res.
117(D16), D16201 (2012),
http://dx.doi.org/10.1029/2011JD017379