[PDF]    http://dx.doi.org/10.3952/physics.v55i1.3052

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 19 (2015)


SOLID-STATE 1H AND 31P NMR AND FTIR SPECTROSCOPY STUDY OF STATIC AND DYNAMIC STRUCTURES IN SOL-GEL DERIVED CALCIUM HYDROXYAPATITES
Laurynas Dagysa, Vytautas Klimavičiusa, Jonas Kausteklisa, Ala Chodosovskajab, Valdemaras Aleksaa, Aivaras Kareivab, and Vytautas Balevičiusa
aDepartment of General Physics and Spectroscopy, Vilnius University, Saulėtekio 9–3, LT-10222 Vilnius, Lithuania
E-mail: vytautas.balevicius@ff.vu.lt
bDepartment of Inorganic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

Received 22 December 2014; revised 20 January 2015; accepted 20 March 2015

Calcium hydroxyapatite containing amorphous phosphate phase (ACP-CaHA) and nano-structured hydroxyapatite (CaHA) have been prepared by two sol-gel synthesis routes. The structural organization of hydroxyl groups in both materials has been determined by means of 1H MAS NMR and FTIR spectroscopy. It has been shown that the amount of structural –OH groups in nano-structured CaHA is significantly higher than that from adsorbed water and vice versa in ACP-CaHA. A precise signal shape analysis has been carried out for both studied samples. The 31P NMR signals have been found being Voigt-shaped in the wide-line as well as in MAS spectra. The 1H and 31P spin-lattice and spin-spin relaxation time measurements have revealed that the fast spin motion takes place in ACP-CaHA. The corresponding correlation time τ ~ 7 · 10–7 s at ~300 K has been determined. The effect of MAS rate on the 31P signal shape also confirms that this motion runs in the time scale of microseconds or even nanoseconds. The magnitude of the anisotropic broadening 1220 ± 20 Hz determined for nano-structured CaHA is very close to the maximum of the dipolar 1H–31P coupling distribution profile estimated using CP MAS kinetics. The dynamics of 1H–31P spin interactions in nano-structured CaHA (τ ~ 3.3 · 10–5 s) is much slower than in ACP-CaHA.
Keywords: solid state NMR, FTIR spectroscopy, nano-structuring, structural water, hydroxyapatites
PACS: 33.25.+k, 82.56.-b, 78.30.-j

STATINIŲ IR DINAMINIŲ STRUKTŪRŲ ZOLIŲ IR GELIŲ BŪDU SUSINTETINTUOSE KALCIO HIDROKSIAPATITUOSE TYRIMAS KIETOJO KŪNO 1H IR 31P BMR BEI FTIR SPEKTROMETRIJOS METODAIS

Laurynas Dagysa, Vytautas Klimavičiusa, Jonas Kausteklisa, Ala Chodosovskajab, Valdemaras Aleksaa, Aivaras Kareivab, Vytautas Balevičiusa
aVilniaus universiteto Bendrosios fizikos ir spektroskopijos katedra, Vilnius, Lietuva
bVilniaus universiteto Neorganinės chemijos katedra, Vilnius, Lietuva

Kalcio hidroksiapatitas, savyje turintis amorfinio fosfato fazę (ACP-CaHA), ir nanostruktūrizuotas CaHA buvo pagaminti tyrimams taikant zolių ir gelių sintezės būdą. Struktūriniai abiejų junginių hidroksilo grupių organizavimosi savitumai nustatyti 1H MAS (‘magiško kampo sukimo’) BMR ir FTIR spektrometrijos metodais. Parodyta, kad nanostruktūrizuotame CaHA, priešingai nei ACP-CaHA, struktūriškai junginio karkase pririštų –OH dalis yra žymiai didesnė už hidroksilo grupių iš adsorbuoto vandens. Atlikta preciziška abiejų bandinių BMR signalų kontūrų formos analizė (>4000 taškų kontūras). Nustatyta, kad 31P BMR spektrų, tiek plačiajuosčių, tiek MAS, signalų kontūrams yra būdinga Voigto forma. Tai reiškia, kad tiriamuosiuose junginiuose yra keli dinaminiai vyksmai, jų indėliai į spektrinius kontūrus aprašomi Lorentzo ir Gausso funkcijomis, o tų vyksmų spartos gali labai skirtis. 1H ir 31P sukinio ir gardelės bei sukinių relaksacijų trukmių (T1 ir T2) matavimai atskleidė ACP-CaHa junginyje labai sparčius sukinių judesius. Nustatyta judesių kambario temperatūros artumoje (~300 K) koreliacijos trukmė yra τ ~ 7 · 10–7 s eilės. Kintamo MAS dažnio poveikis 31P signalo formai taip pat patvirtina, kad ACP-CaHa junginyje vykstančių judesių laiko mastelis patenka į mikro- ar net nanosekundžių skalės sritį. Nanostruktūrizuoto CaHA nevienalyčio anizotropinio signalo išplitimo mastas 1220 ± 20 Hz puikiai dera su 1185 Hz verte, atitinkančia 1H–31P sukinių sąveikos skirstinio maksimumą, jis buvo nustatytas šiam bandiniui, remiantis CP (‘kryžminės poliarizacijos’) MAS kinetikos duomenimis. 1H–31P sukinių sąveikos dinamika nanostruktūrizuotame CaHA yra žymiai lėtesnė (τ ~ 3.3 · 10–5 s) nei ACP-CaHA.

References / Nuorodos

[1] R.Z. Le Geros and J.P. Le Geros, Hydroxyapatite, in: Bioceramics and Their Clinical Applications, ed. T. Kokubo (Woodhead Publishing, Cambridge, 2008) pp. 367–394,
http://dx.doi.org/10.1533/9781845694227.2.367
[2] R.Z. Le Geros, Calcium Phosphates in Oral Biology and Medicine (Karger, Basel, 1991),
http://www.amazon.co.uk/Calcium-Phosphates-Biology-Medicine-Monographs/dp/380555236X/
[3] P. Pascaud, P. Gras, Y. Coppel, C. Rey, and S. Sarda, Interaction between a bisphosphonate, tiludronate, and biomimetic nanocrystalline apatites, Langmuir 29, 2224–2232 (2013),
http://dx.doi.org/10.1021/la3046548
[4] M. Kawashita, K. Taninai, Z. Li, K. Ishikawa, and Y. Yoshida, Preparation of low-crystalline apatite nanoparticles and their coating onto quartz substrates, J. Mater. Sci. Mater. Med. 23, 1355–1362 (2012),
http://dx.doi.org/10.1007/s10856-012-4614-6
[5] K. Sunouchi, K. Tsuru, M. Maruta, G. Kawachi, S. Matsuya, Y. Terada, and K. Ishikawa, Fabrication of solid and hollow carbonate apatite microspheres as bone substitutes using calcite microspheres as a precursor, Dent. Mater. J. 31, 549–557 (2012),
http://dx.doi.org/10.4012/dmj.2011-253
[6] J. Kolmas and W. Kolodziejski, Inverse 31P→1H NMR cross-polarization in hydrated nanocrystalline calcium hydroxyapatite, Chem. Phys. Lett. 554, 128–132 (2012),
http://dx.doi.org/10.1016/j.cplett.2012.10.025
[7] W. Kolodziejski and J. Klinowski, Kinetics of crosspolarization in solid-state NMR: A guide for chemists, Chem. Rev. 102, 613–628 (2002),
http://dx.doi.org/10.1021/cr000060n
[8] R. Mathew, P.N. Gunawidjaja, I. Izquierdo-Barba, K. Jansson, A. Garcia, D. Arcos, M. Vallet-Regi, and M. Eden, Solid-state 31P and 1H NMR investigations of amorphous and crystalline calcium phosphates grown biomimetically from a mesoporous bioactive glass, J. Phys. Chem. C 115, 20572–20582 (2011),
http://dx.doi.org/10.1021/jp206237n
[9] A. Vyalikh, P. Simon, E. Rosseeva, J. Buder, R. Kniep, and U. Scheler, Intergrowth and interfacial structure of biomimetic fluorapatite-gelatin nanocomposite: A solid-state NMR study, J. Phys. Chem. B 118, 724–730 (2014),
http://dx.doi.org/10.1021/jp410299x
[10] A. Vyalikh, P. Simon, T. Kollmann, R. Kniep, and U. Scheler, Local environment in biomimetic hydroxyapatite-gelatin nanocomposites as probed by NMR spectroscopy, J. Phys. Chem. C 115, 1513–1519 (2011),
http://dx.doi.org/10.1021/jp1082399
[11] S. Hayakawa, T. Kanaya, K. Tsuru, Y. Shirosaki, A. Osaka, E. Fujii, K. Kawabata, G. Gasqueres, C. Bonhomme, F. Babonneau, C. Jäger, and H.J. Kleebe, Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles, Acta Biomater. 9, 4856–4867 (2013),
http://dx.doi.org/10.1016/j.actbio.2012.08.024
[12] J. Kolmas, A. Jaklewicz, A. Zima, M. Bućko, Z. Paszkiewicz, J. Lis, A. Ślosarczyk, and W. Kolodziejski, Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: The effect on physicochemical properties, J. Mol. Struct. 987, 40–50 (2011),
http://dx.doi.org/10.1016/j.molstruc.2010.11.058
[13] D. Termine and A.S. Posner, Infra-red determination of the percentage of crystallinity in apatitic calcium phosphates, Nature 211, 268–270 (1966),
http://dx.doi.org/10.1038/211268a0
[14] T. Ishikawa, A. Teramachi, H. Tanaka, A. Yasukawa, and K. Kandori, Fourier transform infrared spectroscopy study of deuteration of calcium hydroxyapatite particles, Langmuir 16, 10221–10226 (2000),
http://dx.doi.org/10.1021/la0004855
[15] Z.H. Cheng, A. Yasukawa, K. Kandori, and T. Ishikawa, FTIR study on incorporation of CO2 into calcium hydroxyapatite, J. Chem. Soc. Faraday Trans. 94, 1501–1505 (1998),
http://dx.doi.org/10.1039/a708581h
[16] OriginLab Corporation,
http://www.OriginLab.com
[17] http://www.ptc.com/product/mathcad/
[18] V. Klimavicius, A. Kareiva, and V. Balevicius, Solid-state NMR study of hydroxyapatite containing amorphous phosphate phase and nano-structured hydroxyapatite: Cut-off averaging of CP MAS kinetics and size profiles of spin clusters, J. Phys. Chem. C 118, 28914–28921 (2014),
http://dx.doi.org/10.1021/jp510229f
[19] K. Ohno, M. Okimura, N. Akai, and Y. Katsumoto, The effect of cooperative hydrogen bonding on the OH stretching-band shift for water clusters studied by matrix-isolation infrared spectroscopy and density functional theory, Phys. Chem. Chem. Phys. 7, 3005–3014 (2005),
http://dx.doi.org/10.1039/b506641g
[20] M.M. Maricq and J.S. Waugh, NMR in rotating solids, J. Chem. Phys. 70, 3300–3316 (1979),
http://dx.doi.org/10.1063/1.437915
[21] M.J. Thrippleton, M. Cutajar, and S. Wimperis, Magic angle spinning (MAS) NMR linewidths in the presence of solid-state dynamics, Chem. Phys. Lett. 452, 233–238 (2008),
http://dx.doi.org/10.1016/j.cplett.2007.12.071
[22] V.I. Bakhmutov, Solid State NMR in Materials Science (CRC Press, Boca Raton, 2012),
http://www.amazon.co.uk/Solid-State-NMR-Materials-Science-Applications/dp/1439869634/
[23] I. Doroshenko, V. Balevicius, V. Sablinskas, K. Aidas, G. Pitsevich, and V. Pogorelov, FTIR/PCA study of propanol in argon matrix: The initial stage of clustering and conformational transitions, Low Temp. Phys. 40, 1384–1390 (2014),
http://dx.doi.org/10.1063/1.4902228