Tatyana V. Bezyazychnaya
, Dzmitry M. Kabanau
,
      Vladimir V. Kabanov
, Yahor V. Lebiadok
,
      Andrew G. Ryabtsev
, Gennadii I. Ryabtsev
,
      Vladimir M. Zelenkovskii
, and S.K. Mehta
      Received 15 August 2014; revised 27 October 2014; accepted 10
      December 2014
      
      
References
/
          Nuorodos
        
        [1] S. Wu, Z. Huang, Y.
        Liu, Q. Huang, W. Guo, and Y. Cao, The effects of indium
        segregation on the valence band structure and optical gain of
        GaInAs/GaAs quantum wells, Phys. E 
41, 1656–1660 (2009),
        
        
http://dx.doi.org/10.1016/j.physe.2009.05.019
        [2] S. Zhang, J. Shi, M. Zhang, M. Yang, and J. Li,
        First-principles investigation on optical properties of GaN and
        InGaN alloys, J. Phys. Appl. Phys. 
44, 495304 (2011), 
        
http://dx.doi.org/10.1088/0022-3727/44/49/495304
        [3] M. Pfister, M.B. Johnson, S.F. Alvarado, H.W.M. Salemink, U.
        Marti, D. Martin, F. Morier-Genoud, and F.K. Reinhart, Indium
        distribution in InGaAs quantum wires observed with the scanning
        tunneling microscope, Appl. Phys. Lett. 
67, 1459–1461
        (1995), 
        
http://dx.doi.org/10.1063/1.114494
        [4] T.M. Smeeton, M.J. Kappers, J.S. Barnard, M.E. Vickers, and
        C.J. Humphreys, Electron-beam-induced strain within InGaN
        quantum wells: False indium cluster detection in the
        transmission electron microscope, Appl. Phys. Lett. 
83,
        5419–5421 (2003), 
        
http://dx.doi.org/10.1063/1.1636534
        [5] C.J. Humphreys, Does In form In-rich clusters in InGaN
        quantum wells? Philos. Mag. 
87, 1971–1982 (2007), 
        
http://dx.doi.org/10.1080/14786430701342172
        [6] V.N. Jmerik, A.M. Mizerov, T.V. Shubina, D.S. Plotnikov,
        M.V. Zamoryanskaya, M.A. Yagovkina, Ya.V. Domracheva, A.A.
        Sitnikova, and S.V. Ivanov, Features of the spatial distribution
        of indium in InGaN epitaxial layers grown by plasma-assisted
        molecular beam epitaxy, Semiconductors 
42, 616–623
        (2008), 
        
http://dx.doi.org/10.1134/S1063782608050229
        [7] V.N. Pavlovskii, E.V. Lutsenko, G.P. Yablonskii, A.F.
        Kolomys, V.V. Strelchuk, E.A. Avramenko, and M.Ya. Valakh,
        Photoluminescence and Raman scattering in spatially
        inhomogeneous heteroepitaxial InGaN layers, J. Appl. Spectros. 
78,
        518–523 (2011), 
        
http://dx.doi.org/10.1007/s10812-011-9493-y
        [8] J. Shi, S. Zhang, M. Yang, S. Zhu, and M. Zhang, Light
        emission from several-atom InN clusters in wurtzite Ga-rich
        InGaN alloys and InGaN/GaN strained quantum wells, Acta Mater. 
59,
        2773–2782 (2011), 
        
http://dx.doi.org/10.1016/j.actamat.2011.01.016
        [9] M.G. Ganchenkova, V.A. Borodin, K. Laaksonen, and R.M.
        Nieminen, Modeling the compositional instability in wurtzite Ga
1–xIn
xN,
        Phys. Rev. B 
77, 075207 (2008), 
        
http://dx.doi.org/10.1103/PhysRevB.77.075207
        [10] P. Rudolph, Defect formation during crystal growth from the
        melt, in: 
Springer Handbook of Crystal Growth, eds. G.
        Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley (Springer,
        Dordrecht, 2010) pp. 159–201, 
        
http://dx.doi.org/10.1007/978-3-540-74761-1
        [11] T.V. Bez’yazychnaya, V.M. Zelenkovskii, G.I. Ryabtsev, and
        M.M. Sobolev, Effect of In and Al content on characteristics of
        intrinsic defects in gallium arsenide-based quantum dots, Fiz.
        Tekh. Poluprovodn. (Sov. Phys. Semicond.) 
38(2), 213–217
        (2004) [in Russian], 
        
http://journals.ioffe.ru/ftp/2004/02/p213-217.pdf
        [12] J. Zhu, F. Liu, G.B. Stringfellow, and S. Wei,
        Strain-enhanced doping in semiconductors: effects of dopant size
        and charge state, Phys. Rev. Lett. 
105, 195503 (2010), 
        
http://dx.doi.org/10.1103/PhysRevLett.105.195503
        [13] M. Seel, Atomic clusters and cluster models in solid state
        physics, Int. J. Quant. Chem. 
34(s22), 265–274 (1988), 
        
http://dx.doi.org/10.1002/qua.560340831
        [14] S. Yip, 
Handbook of Materials Modelling (Springer,
        Dordrecht, 2005) p. 1853, 
        
http://dx.doi.org/10.1007/978-1-4020-3286-8
        [15] I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, Band
        parameters for III–V compound semiconductors and their alloys,
        J. Appl. Phys. 
89, 5815–5875 (2001), 
        
http://dx.doi.org/10.1063/1.1368156
        [16] F.P. Larkins, Point defect calculations in diamond-type
        crystals by the extended Hückel method 1: General theory and the
        vacancy problem, J. Phys. C 
4, 3065–3076 (1971), 
        
http://dx.doi.org/10.1088/0022-3719/4/18/012
        [17] S. Huzinaga, J. Andzelm, M. Klobukowski, E. Radzio-Andzelm,
        Y. Sakai, and H. Tatewaki, 
Gaussian Basis Sets for Molecular
          Calculations (Elsevier, Amsterdam, 1984), 
        
http://www.amazon.co.uk/Gaussian-Basis-Sets-Molecular-Calculations/dp/0444564152/
        [18] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S.
        Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.
        Su, T.L. Windus, M. Dupuis, and J.A. Montgomery, General atomic
        and molecular electronic structure system, J. Comput. Chem. 
14(11),
        1347–1363 (1993), 
        
http://dx.doi.org/10.1002/jcc.540141112
        [19] 
http://www.msg.ameslab.gov/gamess/
        [20] J.P.P. Stewart, Application of the PM6 method to modeling
        the solid state, J. Mol. Model. 
14, 499–535 (2008), 
        
http://dx.doi.org/10.1007/s00894-008-0299-7
        [21] 
http://openmopac.net/home.html
        [22] P. Pulay, Convergence acceleration of iterative sequences.
        The case of SCF iteration, Chem. Phys. Lett. 
73, 393–398
        (1980), 
        
http://dx.doi.org/10.1016/0009-2614(80)80396-4
        [23] T.V. Bezyazychnaya, M.V. Bogdanovich, V.M. Zelenkovskii,
        V.V. Kabanov, D.M. Kabanau, V.S. Kalinov, Y.V. Lebiadok, A.G.
        Ryabtsev, and G.I. Ryabtsev, Quantum chemistry method
        application to investigation of radiation induced defects in
        laser diode active layers and semiconductor photocells, in: 
Book
          of Papers of the 9th Belarusian-Russian Workshop
          “Semiconductor Lasers and Systems” (B.I. Stepanov
        Institute of Physics, Minsk, 2013) p. 175 [in Russian], 
        
http://www.semiconductorlasers-and-systems.by/content/BRW-2013.pdf
        [24] D.C. Look, G.C. Farlow, P.J. Drevinsky, D.F. Bliss, and
        J.R. Sizelove, On the nitrogen vacancy in GaN, Appl. Phys. Lett.
        
83, 3525–3527 (2003), 
        
http://dx.doi.org/10.1063/1.1623009
        [25] P.A. Schultz and O. von Lilienfeld, Simple intrinsic
        defects in gallium arsenide, Model. Simulat. Mater. Sci. Eng. 
17,
        084007 (2009), 
        
http://dx.doi.org/10.1088/0965-0393/17/8/084007
        [26] J.T. Schick, C.G. Morgan, and P. Papoulias,
        First-principles study of As interstitials in GaAs: Convergence,
        relaxation, and formation energy, Phys. Rev. B 
66,
        195302 (2002), 
        
http://dx.doi.org/10.1103/PhysRevB.66.195302
        [27] H. Komsa and A. Pasquarello, Comparison of vacancy and
        antisite defects in GaAs and InGaAs through hybrid functionals,
        J. Phys. Condens. Matter 
24, 045801 (2012), 
        
http://dx.doi.org/10.1088/0953-8984/24/4/045801
        [28] M. Haugk, J. Elsner, Th. Frauenheim, T.E.M. Staab, C.D.
        Latham, R. Jones, H.S. Leipner, T. Heine, G. Seifert, and M.
        Sternberg, Structures, energetics and electronic properties of
        complex III–V semiconductor systems, Phys. Status Solidi B 
217,
        473–511 (2000), 
        
http://dx.doi.org/10.1002/(SICI)1521-3951(200001)217:1<473::AID-PSSB473>3.0.CO;2-N
        [29] V.I. Baikov, E.I. Isaev, P.A. Korzhavyi, Yu.Kh. Vekilov,
        and I.A. Abrikosov, Ab initio studies of the energy
        characteristics and magnetic properties of point defects in
        GaAs, Phys. Solid State 
47, 1831–1836 (2005), 
        
http://dx.doi.org/10.1134/1.2087732
        [30] J. Gebauer, M. Lausmann, F. Redmann, R. Krause-Rehberg,
        H.S. Leipner, E.R. Weber, and Ph. Ebert, Determination of the
        Gibbs free energy of formation of Ga vacancies in GaAs by
        positron annihilation, Phys. Rev. B 
67, 235207 (2003), 
        
http://dx.doi.org/10.1103/PhysRevB.67.235207
        [31] J.L. Rouviere, Y. Kim, J. Cunningham, J.A. Rentschler, A.
        Bourret, and A. Ourmazd, Measuring properties of point defects
        by electron microscopy: The Ga vacancy in GaAs, Phys. Rev. Lett.
        
68, 2798–2803 (1992), 
        
http://dx.doi.org/10.1103/PhysRevLett.68.2798
        [32] A.A. Bonapasta and P. Giannozzi, Defect engineering in
        III–V ternary alloys: effects of strain and local charge on the
        formation of substitutional and interstitial native defects,
        Physica B 
308–310, 846–849 (2001), 
        
http://dx.doi.org/10.1016/S0921-4526(01)00909-7
        [33] Y.A. Du, S. Sakong, and P. Kratzer, As vacancies, Ga
        antisites, and Au impurities in zinc blende and wurtzite GaAs
        nanowire segments from first principles, Phys. Rev. B 
87,
        075308 (2013), 
        
http://dx.doi.org/10.1103/PhysRevB.87.075308
        [34] J. Neugebauer and C.G. Van de Walle, Atomic geometry and
        electronic structure of native defects in GaN, Phys. Rev. B 
50,
        8067–8070 (1994), 
        
http://dx.doi.org/10.1103/PhysRevB.50.8067
        [35] J. Xie, K. Zhang, and X. Xie, Formation energies and
        electronic structures of native defects in GaN, Chin. Phys.
        Lett. 
13, 867–869 (1996), 
        
http://dx.doi.org/10.1088/0256-307X/13/11/018
        [36] K. Laaksonen, M.G. Ganchenkova, and R.M. Nieminen,
        Vacancies in wurtzite GaN and AlN, J. Phys. Condens. Matter 
21,
        015803 (2009), 
        
http://dx.doi.org/10.1088/0953-8984/21/1/015803