[PDF]    http://dx.doi.org/10.3952/physics.v55i1.3053

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 1016 (2015)


INFLUENCE OF VACANCIES ON INDIUM ATOM DISTRIBUTION IN InGaAs AND InGaN COMPOUNDS
Tatyana V. Bezyazychnayaa, Dzmitry M. Kabanaub, Vladimir V. Kabanovb, Yahor V. Lebiadokb, Andrew G. Ryabtsevb, Gennadii I. Ryabtsevb, Vladimir M. Zelenkovskiia, and S.K. Mehtac
aInstitute of Physical-Organic Chemistry, National Academy of Sciences of Belarus, Surhanava St. 13, 220072 Minsk, Belarus
bB.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Nezalezhnasti Ave. 68, 220072 Minsk, Belarus
E-mail: ryabtsev@ifanbel.bas-net.by
cSolid State Physics Laboratory, 110054 Delhi, India

Received 15 August 2014; revised 27 October 2014; accepted 10 December 2014

It has been theoretically ascertained that for defect-free InGaAs and InGaN compounds the uniform distribution of indium atoms is more energetically preferable than the clustering distribution. The presence of gallium and arsenic vacancy in InGaAs and nitrogen vacancy in InGaN facilitates indium atom clustering distribution. It has been shown that the increase in the indium content in InGaAs and InGaN compounds leads to the decrease of the formation energy of gallium, arsenic and nitrogen vacancies.
Keywords: InGaN, InGaAs, defect formation energy
PACS: 61.72.uj, 61.72.Bb

VAKANSIJŲ ĮTAKA INDŽIO ATOMŲ PASISKIRSTYMUI InGaAs IR InGaN JUNGINIUOSE

Tatyana V. Bezyazychnayaa, Dzmitry M. Kabanaub, Vladimir V. Kabanovb, Yahor V. Lebiadokb, Andrew G. Ryabtsevb, Gennadii I. Ryabtsevb, Vladimir M. Zelenkovskiia, S.K. Mehtac
aBaltarusijos nacionalinės mokslų akademijos Fizikinės ir organinės chemijos institutas, Minskas, Baltarusija
bBaltarusijos nacionalinės mokslų akademijos B.I. Stepanovo fizikos institutas, Minskas, Baltarusija
cKietojo kūno fizikos laboratorija, Delis, Indija

References / Nuorodos

[1] S. Wu, Z. Huang, Y. Liu, Q. Huang, W. Guo, and Y. Cao, The effects of indium segregation on the valence band structure and optical gain of GaInAs/GaAs quantum wells, Phys. E 41, 1656–1660 (2009),
http://dx.doi.org/10.1016/j.physe.2009.05.019
[2] S. Zhang, J. Shi, M. Zhang, M. Yang, and J. Li, First-principles investigation on optical properties of GaN and InGaN alloys, J. Phys. Appl. Phys. 44, 495304 (2011),
http://dx.doi.org/10.1088/0022-3727/44/49/495304
[3] M. Pfister, M.B. Johnson, S.F. Alvarado, H.W.M. Salemink, U. Marti, D. Martin, F. Morier-Genoud, and F.K. Reinhart, Indium distribution in InGaAs quantum wires observed with the scanning tunneling microscope, Appl. Phys. Lett. 67, 1459–1461 (1995),
http://dx.doi.org/10.1063/1.114494
[4] T.M. Smeeton, M.J. Kappers, J.S. Barnard, M.E. Vickers, and C.J. Humphreys, Electron-beam-induced strain within InGaN quantum wells: False indium cluster detection in the transmission electron microscope, Appl. Phys. Lett. 83, 5419–5421 (2003),
http://dx.doi.org/10.1063/1.1636534
[5] C.J. Humphreys, Does In form In-rich clusters in InGaN quantum wells? Philos. Mag. 87, 1971–1982 (2007),
http://dx.doi.org/10.1080/14786430701342172
[6] V.N. Jmerik, A.M. Mizerov, T.V. Shubina, D.S. Plotnikov, M.V. Zamoryanskaya, M.A. Yagovkina, Ya.V. Domracheva, A.A. Sitnikova, and S.V. Ivanov, Features of the spatial distribution of indium in InGaN epitaxial layers grown by plasma-assisted molecular beam epitaxy, Semiconductors 42, 616–623 (2008),
http://dx.doi.org/10.1134/S1063782608050229
[7] V.N. Pavlovskii, E.V. Lutsenko, G.P. Yablonskii, A.F. Kolomys, V.V. Strelchuk, E.A. Avramenko, and M.Ya. Valakh, Photoluminescence and Raman scattering in spatially inhomogeneous heteroepitaxial InGaN layers, J. Appl. Spectros. 78, 518–523 (2011),
http://dx.doi.org/10.1007/s10812-011-9493-y
[8] J. Shi, S. Zhang, M. Yang, S. Zhu, and M. Zhang, Light emission from several-atom InN clusters in wurtzite Ga-rich InGaN alloys and InGaN/GaN strained quantum wells, Acta Mater. 59, 2773–2782 (2011),
http://dx.doi.org/10.1016/j.actamat.2011.01.016
[9] M.G. Ganchenkova, V.A. Borodin, K. Laaksonen, and R.M. Nieminen, Modeling the compositional instability in wurtzite Ga1–xInxN, Phys. Rev. B 77, 075207 (2008),
http://dx.doi.org/10.1103/PhysRevB.77.075207
[10] P. Rudolph, Defect formation during crystal growth from the melt, in: Springer Handbook of Crystal Growth, eds. G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley (Springer, Dordrecht, 2010) pp. 159–201,
http://dx.doi.org/10.1007/978-3-540-74761-1
[11] T.V. Bez’yazychnaya, V.M. Zelenkovskii, G.I. Ryabtsev, and M.M. Sobolev, Effect of In and Al content on characteristics of intrinsic defects in gallium arsenide-based quantum dots, Fiz. Tekh. Poluprovodn. (Sov. Phys. Semicond.) 38(2), 213–217 (2004) [in Russian],
http://journals.ioffe.ru/ftp/2004/02/p213-217.pdf
[12] J. Zhu, F. Liu, G.B. Stringfellow, and S. Wei, Strain-enhanced doping in semiconductors: effects of dopant size and charge state, Phys. Rev. Lett. 105, 195503 (2010),
http://dx.doi.org/10.1103/PhysRevLett.105.195503
[13] M. Seel, Atomic clusters and cluster models in solid state physics, Int. J. Quant. Chem. 34(s22), 265–274 (1988),
http://dx.doi.org/10.1002/qua.560340831
[14] S. Yip, Handbook of Materials Modelling (Springer, Dordrecht, 2005) p. 1853,
http://dx.doi.org/10.1007/978-1-4020-3286-8
[15] I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys, J. Appl. Phys. 89, 5815–5875 (2001),
http://dx.doi.org/10.1063/1.1368156
[16] F.P. Larkins, Point defect calculations in diamond-type crystals by the extended Hückel method 1: General theory and the vacancy problem, J. Phys. C 4, 3065–3076 (1971),
http://dx.doi.org/10.1088/0022-3719/4/18/012
[17] S. Huzinaga, J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai, and H. Tatewaki, Gaussian Basis Sets for Molecular Calculations (Elsevier, Amsterdam, 1984),
http://www.amazon.co.uk/Gaussian-Basis-Sets-Molecular-Calculations/dp/0444564152/
[18] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, and J.A. Montgomery, General atomic and molecular electronic structure system, J. Comput. Chem. 14(11), 1347–1363 (1993),
http://dx.doi.org/10.1002/jcc.540141112
[19] http://www.msg.ameslab.gov/gamess/
[20] J.P.P. Stewart, Application of the PM6 method to modeling the solid state, J. Mol. Model. 14, 499–535 (2008),
http://dx.doi.org/10.1007/s00894-008-0299-7
[21] http://openmopac.net/home.html
[22] P. Pulay, Convergence acceleration of iterative sequences. The case of SCF iteration, Chem. Phys. Lett. 73, 393–398 (1980),
http://dx.doi.org/10.1016/0009-2614(80)80396-4
[23] T.V. Bezyazychnaya, M.V. Bogdanovich, V.M. Zelenkovskii, V.V. Kabanov, D.M. Kabanau, V.S. Kalinov, Y.V. Lebiadok, A.G. Ryabtsev, and G.I. Ryabtsev, Quantum chemistry method application to investigation of radiation induced defects in laser diode active layers and semiconductor photocells, in: Book of Papers of the 9th Belarusian-Russian Workshop “Semiconductor Lasers and Systems” (B.I. Stepanov Institute of Physics, Minsk, 2013) p. 175 [in Russian],
http://www.semiconductorlasers-and-systems.by/content/BRW-2013.pdf
[24] D.C. Look, G.C. Farlow, P.J. Drevinsky, D.F. Bliss, and J.R. Sizelove, On the nitrogen vacancy in GaN, Appl. Phys. Lett. 83, 3525–3527 (2003),
http://dx.doi.org/10.1063/1.1623009
[25] P.A. Schultz and O. von Lilienfeld, Simple intrinsic defects in gallium arsenide, Model. Simulat. Mater. Sci. Eng. 17, 084007 (2009),
http://dx.doi.org/10.1088/0965-0393/17/8/084007
[26] J.T. Schick, C.G. Morgan, and P. Papoulias, First-principles study of As interstitials in GaAs: Convergence, relaxation, and formation energy, Phys. Rev. B 66, 195302 (2002),
http://dx.doi.org/10.1103/PhysRevB.66.195302
[27] H. Komsa and A. Pasquarello, Comparison of vacancy and antisite defects in GaAs and InGaAs through hybrid functionals, J. Phys. Condens. Matter 24, 045801 (2012),
http://dx.doi.org/10.1088/0953-8984/24/4/045801
[28] M. Haugk, J. Elsner, Th. Frauenheim, T.E.M. Staab, C.D. Latham, R. Jones, H.S. Leipner, T. Heine, G. Seifert, and M. Sternberg, Structures, energetics and electronic properties of complex III–V semiconductor systems, Phys. Status Solidi B 217, 473–511 (2000),
http://dx.doi.org/10.1002/(SICI)1521-3951(200001)217:1<473::AID-PSSB473>3.0.CO;2-N
[29] V.I. Baikov, E.I. Isaev, P.A. Korzhavyi, Yu.Kh. Vekilov, and I.A. Abrikosov, Ab initio studies of the energy characteristics and magnetic properties of point defects in GaAs, Phys. Solid State 47, 1831–1836 (2005),
http://dx.doi.org/10.1134/1.2087732
[30] J. Gebauer, M. Lausmann, F. Redmann, R. Krause-Rehberg, H.S. Leipner, E.R. Weber, and Ph. Ebert, Determination of the Gibbs free energy of formation of Ga vacancies in GaAs by positron annihilation, Phys. Rev. B 67, 235207 (2003),
http://dx.doi.org/10.1103/PhysRevB.67.235207
[31] J.L. Rouviere, Y. Kim, J. Cunningham, J.A. Rentschler, A. Bourret, and A. Ourmazd, Measuring properties of point defects by electron microscopy: The Ga vacancy in GaAs, Phys. Rev. Lett. 68, 2798–2803 (1992),
http://dx.doi.org/10.1103/PhysRevLett.68.2798
[32] A.A. Bonapasta and P. Giannozzi, Defect engineering in III–V ternary alloys: effects of strain and local charge on the formation of substitutional and interstitial native defects, Physica B 308–310, 846–849 (2001),
http://dx.doi.org/10.1016/S0921-4526(01)00909-7
[33] Y.A. Du, S. Sakong, and P. Kratzer, As vacancies, Ga antisites, and Au impurities in zinc blende and wurtzite GaAs nanowire segments from first principles, Phys. Rev. B 87, 075308 (2013),
http://dx.doi.org/10.1103/PhysRevB.87.075308
[34] J. Neugebauer and C.G. Van de Walle, Atomic geometry and electronic structure of native defects in GaN, Phys. Rev. B 50, 8067–8070 (1994),
http://dx.doi.org/10.1103/PhysRevB.50.8067
[35] J. Xie, K. Zhang, and X. Xie, Formation energies and electronic structures of native defects in GaN, Chin. Phys. Lett. 13, 867–869 (1996),
http://dx.doi.org/10.1088/0256-307X/13/11/018
[36] K. Laaksonen, M.G. Ganchenkova, and R.M. Nieminen, Vacancies in wurtzite GaN and AlN, J. Phys. Condens. Matter 21, 015803 (2009),
http://dx.doi.org/10.1088/0953-8984/21/1/015803