[PDF]    http://dx.doi.org/10.3952/physics.v55i1.3054

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 1723 (2015)


ELECTRICAL AND MAGNETORESISTIVE PROPERTIES OF THE Ag/La2/3Sr1/3MnO3 POINT-PROBE CONTACTS
Irina Černiukėa, Bonifacas Vengalisa, Angelė Steikūnienėa, Gražina Grigaliūnaitė-Vonsevičienėb, and Antanas Kleopas Oginskisa
aCenter for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: veng@pfi.lt
bVilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania

Received 1 October 2014; revised 13 October 2014; accepted 10 December 2014

We report electrical and magnetoresistive properties of Ag point-probe contacts formed by attaching the bent Ag wire (∅ = 0.25 mm) to the top of the La2/3Sr1/3MnO3 (LSMO) thin film magnetron sputtered at 800 °C on MgO(100) single crystal substrates. Significant contact magnetoresistance values (up to 13% at T = 295 K and μ0H = 0.73 T) have been measured for the Ag/LSMO junctions by applying a 3 point-probe method. The origin of both temperature-dependent resistance and magnetoresistance of the Ag/LSMO contacts has been explained taking into account the dominating role of spreading resistance. It was found that keeping of the films in air for 1 month as well as ultrathin overlayers (d ~ 3–5 nm) of the highly resistive multiferroic BiFeO3 magnetron sputtered onto the manganite film resulted in a significant increase of contact resistance and reduced magnetoresistance values.
Keywords: manganite films, magnetoresistance, 3 point-probe method, contact resistance, spreading resistance
PACS: 73.40.Cg, 73.43.Qt, 75.47.-m

MAŽO PLOTO Ag/La2/3Sr1/3MnO3 SANDŪRŲ ELEKTRINĖS IR MAGNETOVARŽOS SAVYBĖS

Irina Černiukėa, Bonifacas Vengalisa, Angelė Steikūnienėa, Gražina Grigaliūnaitė-Vonsevičienėb, Antanas Kleopas Oginskisa
aFizinių ir technologijos mokslų centras, Vilnius, Lietuva
bVilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Darbe tirtos susidariusios mažo ploto Ag/La2/3Sr1/3MnO3 (Ag/LSMO) sandūros elektrinės ir magnetovaržos savybės. Šios sandūros buvo sudaromos mechaniškai prispaudžiant sulenktą Ag vielą (∅ = 0,25 mm) prie plono (LSMO) sluoksnio, užauginto magnetroninio dulkinimo būdu ant kristalinio MgO(100) padėklo, esant 800 °C temperatūrai. Didžiausios tokių sandūrų magnetovaržos vertės, siekiančios 13 % (kai μ0H = 0,73 T), buvo išmatuotos 295 K temperatūroje naudojant 3-jų elektrodų būdą. Tyrimai parodė, kad darbe tyrinėtų mažo ploto Ag/LSMO sandūrų elektrines ir magnetovaržos savybes lemia po elektrodu esantis ribotas medžiagos tūris, kuriame sutelktos srovės tankio linijos ir jį atitinkanti vadinamoji sutekėjimo elektrinė varža. Papildoma didelės elektrinės varžos paviršinio sluoksnio įtaka buvo parodyta tiriant sandūras, sudarytas ant ilgą laiką ore išlaikytų LSMO sluoksnių paviršiaus, taip pat ant sluoksnio paviršiaus užgarinus ypač ploną (d ~ 3–5 nm) didelės elektrinės varžos BiFeO3 junginio sluoksnį.

References / Nuorodos

[1] M. Navasery, S.A. Halim, N. Soltani, G. Bahmanrokh, A. Dehzangi, M. Erfani, A. Kamalianfar, S.K. Chen, and K.Y. Pan, High Curie temperature for La5/8Sr3/8MnO3 thin films prepared by pulsed laser deposition on glass substrates, Int. J. Electrochem. Sci. 8, 467–476 (2013),
http://www.electrochemsci.org/papers/vol8/80100467.pdf
[2] D. Hrabovsky, G. Herranz, K. Postava, I.C. Infante, F. Sánchez, and J. Fontcuberta, Optical sensing of magnetic field based on magnetorefractive effect in manganites, Proc. SPIE 7356, 73560R (2009),
http://dx.doi.org/10.1117/12.820758
[3] P. Stoliar, P. Levy, M.J. Sanchez, A.G. Leyva, C.A. Albornoz, F. Gomez-Marlasca, A. Zanini, C. Toro Salazar, N. Ghenzi, and M.J. Rozenberg, Non-volatile multilevel resistive switching memory cell: A transition metal oxide-based circuit, arXiv:1310.3613v1 [cond-mat.other] (2013),
http://arxiv.org/abs/1310.3613v1
[4] L. Granja, L.E. Hueso, P. Levy, and N.D. Mathur, Exploiting phase separation in monolithic La0.6Ca0.4MnO3 devices, Appl. Phys. Lett. 103, 062404 (2013),
http://dx.doi.org/10.1063/1.4818314
[5] S.S. Zhao, H. Ni, K. Zhao, S.Q. Zhao, Y.C. Kong, and H.K. Wong, High-sensitivity photovoltaic responses in manganite-based heterojunctions on Si substrates for weak light detection, Appl. Opt. 50(17), 2666–2670 (2011),
http://dx.doi.org/10.1364/AO.50.002666
[6] Z.J. Yue, K. Zhao, H. Ni, S.Q. Zhao, Y.C. Kong, H.K. Wong, and A.J. Wang, Photo-induced magnetoresistance enhancement in manganite heterojunction at room temperature, J. Phys. D 44, 095103 (2011),
http://dx.doi.org/10.1088/0022-3727/44/9/095103
[7] W.M. Lu, J.R. Sun, D.J. Wang, Y.W. Xie, S. Liang, Y.Z. Chen, and B.G. Shen, Bias-dependent rectifying properties of n-n manganite heterojunctions La1–xCaxMnO3/SrTiO3:Nb (x = 0.65–1), Appl. Phys. Lett. 93, 212502 (2008),
http://dx.doi.org/10.1063/1.3021399
[8] S. Zhao, K. Zhao, H. Ni, W. Xiang, S. Zhao, Y.-C. Kong, and H.-K. Wong, Manganite heterojunction photodetectors for femtosecond pulse laser measurements, Opt. Laser Technol. 44, 1758–1761 (2012),
http://dx.doi.org/10.1016/j.optlastec.2012.02.006
[9] Z. Li, M. Bosman, Z. Yang, P. Ren, L. Wang, L. Cao, X. Yu, C. Ke, M.B.H. Breese, A. Rusydi, W. Zhu, Z. Dong, and Y.L. Foo, Interface and surface cation stoichiometry modified by oxygen vacancies in epitaxial manganite films, Adv. Funct. Mater. 22(20), 4312–4321 (2012),
http://dx.doi.org/10.1002/adfm.201200143
[10] N. Ghenzi, M.J. Sanchez, F. Gomez-Marlasca, P. Levy, and M.J. Rozenberg, Hysteresis switching loops in Ag-manganite memristive interfaces, J. Appl. Phys. 107, 093719 (2010),
http://dx.doi.org/10.1063/1.3372617
[11] T. Yokota, S. Murata, and M. Gomi, Electric field-induced magnetic changes in La0.7Sr0.3MnO3 thin film using electric field-induced resistance phenomenon, Appl. Phys. Lett. 102, 152404 (2013),
http://dx.doi.org/10.1063/1.4802483
[12] LI. Abad, B. Martínez, and LI. Balcells, Surface behavior of LCMO epitaxial thin films, Appl. Phys. Lett. 87, 212502 (2005)
http://dx.doi.org/10.1063/1.122261
[13] A. Plecenik, K. Frohlich, J.P. Espinos, J.P. Holgado, H. Halabica, M. Pripko, and A. Gilabert, Degradation of LaMnO3-y surface layer in LaMnO3-y/metal interface, Appl. Phys. Lett. 81(5), 859–861 (2002),
http://dx.doi.org/10.1063/1.1497439
[14] L. Mieville, D. Worledge, and T.H. Geballe, Transport across conducting ferromagnetic oxide/metal interfaces, Appl. Phys. Lett. 73(12), 1736–1738 (1998),
http://dx.doi.org/10.1063/1.122261
[15] L. Granja, L.E. Hueso, M. Quintero, P. Levy, and N.D. Mathur, Electrical transport properties of metal/La0.70Ca0.30MnO3 interfaces, Physica B 398, 235–237 (2007),
http://dx.doi.org/10.1016/j.physb.2007.04.022
[16] B. Vengalis, J. Devenson, A.K. Oginskis, V. Lisauskas, F. Anisimovas, R. Butkute, and L. Dapkus, Optical and electrical properties of Nd-doped BiFeO3 thin films and heterostructures, Phys. Status Solidi C 6(12), 2746–2749 (2009),
http://dx.doi.org/10.1002/pssc.200982540
[17] L.F. Wang, X.L. Tan, P.F. Chen, B.W. Zhi, Z.G. Sun, Z. Huang, G.Y. Gao, and W.B. Wu, Anisotropic resistivities in anisotropic-strain-controlled phase-separated La0.67Sr0.33MnO3/NdGaO3(100) films, Appl. Phys. Lett. 103(7), 072407 (2013),
http://dx.doi.org/10.1063/1.4818636
[18] R.P. Borges, W. Guichard, J.G. Lunney, J.M.D. Coey, and F. Ott, Magnetic and electric “dead” layers in (La0.7Sr0.3)MnO3 thin films, J. Appl. Phys. 89, 3868 (2001),
http://dx.doi.org/10.1063/1.1331658
[19] C.M. Xiong, J.R. Suna, and B.G. Shena, Dependence of magnetic anisotropy of the La0.67Ca0.33MnO3 films on substrate and film thickness, Solid State Commun. 34, 465–469 (2005),
http://dx.doi.org/10.1016/j.ssc.2005.02.020
[20] P. Zhang, On the spreading resistance of thin film contacts, IEEE Trans. Electron Dev. 59(7), 1936–1940 (2012),
http://dx.doi.org/10.1109/TED.2012.2195317