Received 1 October 2014; revised 25 November 2014; accepted 10
December 2014
TRIJŲ 4-N-ALKIL-4'-CIANOBIFENILŲ
TERMOTROPINĖS, ATSPINDŽIO IR TERMOOPTINĖS SAVYBĖS
References
/
Nuorodos
[1] L.M. Blinov and V.G.
Chigrinov,
Electrooptic Effects in Liquid Crystal Materials
(Springer Verlag, New York, 1993),
http://dx.doi.org/10.1007/978-1-4612-2692-5
[2] M.A. Anisimov,
Critical Phenomena in Liquids and Liquid
Crystals (Gordon and Breach Science Publishers, New
York–London, 1991),
http://www.amazon.co.uk/Critical-Phenomena-Liquids-Liq-Anisimov/dp/2881248063/
[3] P. Yeh and C. Gu,
Optics of Liquid Crystal Displays
(Wiley Publishing, London–New York, 2009)
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470181761.html
[4] I.C. Khoo,
Liquid Crystals (Wiley Publishing,
London–New York, 2007),
http://dx.doi.org/10.1002/0470084030
[5] H.S. Subramhanyam, C.S. Prabha, and D. Krishnamurti, Optical
anisotropy of nematic compounds, Mol. Cryst. Liq. Cryst.
28,
201–215 (1974),
http://dx.doi.org/10.1080/15421407408083165
[6] A. Nesrullajev, A.S. Sonın, and A.Z. Rabinovich, Study of
the character of smectic A–nematic phase transitions in
cyanobiphenyl mixtures, Crystallography
25, 435–439
(1980) [in Russian]
[7] M. Mitra, S. Gupta, R. Paul, and S. Paul, Determination of
orientational order parameter from optical studies for a
homologous series of mesomorphic compounds, Mol. Cryst. Liq.
Cryst.
199, 257–266 (1991),
http://dx.doi.org/10.1080/00268949108030937
[8] M.S. Zakerhamidi, Z. Ebrahimi, H. Tajalli, A. Ghanadzadeh,
M. Modhadam, and A. Ranjkesh, Refractive indices and order
parameters of some tolane-based nematic liquid crystals, J. Mol.
Liq.
157, 119–124 (2010),
http://dx.doi.org/10.1016/j.molliq.2010.08.015
[9] K. Bhowmick, A. Mukhopadhyay, and C.D. Mukherjee, Texture
and optical studies of the mesophases of cyanocyclohexyl
cyclohexanes, Phase Transit.
76, 671–682 (2003),
http://dx.doi.org/10.1080/0141159021000008927
[10] M.F. Vuks, Determination of optical anisotropy of aromatic
molecules from double refraction in crystals, Opt. Spectrosc.
20,
361–368 (1966) [in Russian]
[11] M.F. Vuks,
Electrical and Optical Properties of
Molecules and Condensed Matter (Leningrad University
Publishing House, Leningrad, 1984) [in Russian]
[12] H.E.J. Neugebauer, Clausius–Mossotti equation for certain
types of anisotropic crystals, Can. J. Phys.
32, 1–8
(1954),
http://dx.doi.org/10.1139/p54-001
[13] H.S. Subramhanyam and D. Krishnamurti, Polarization field
and molecular order in nematic liquid crystals, Mol. Cryst. Liq.
Cryst.
22, 239–248 (1973),
http://dx.doi.org/10.1080/15421407308083347
[14] D. Bhuyan, P. Pardhasarathi, K.N. Singh, D. Mathavi Latha,
P.V. Datta Prasad, P.R. Alapati, and V.G.K.M. Pisipati, Study of
molecular polarizabilities and orientational order parameter in
the nematic phase of 6.0120.6 and 7.0120.7, World J. Condens.
Matter. Phys.
1, 167–174 (2011),
http://dx.doi.org/10.4236/wjcmp.2011.14025
[15] S.S. Sastry, T.V. Kumari, K. Mallika, B.G. Sankara Rao,
S.-T. Ha, and S. Lakshminarayana, Order parameter studies on
EPAP alcanoate mesogens, Liq. Cryst.
39, 295–301 (2012),
http://dx.doi.org/10.1080/02678292.2011.643246
[16] I. Haller, Thermodynamic and static properties of liquid
crystals, Progr. Solid State Chem.
10, 103–118 (1975),
http://dx.doi.org/10.1016/0079-6786(75)90008-4
[17] I. Haller, H.A. Huggins, H.R. Lilienthal, and T.R. McGuire,
Order-related properties of some nematic liquids, J. Phys. Chem.
77, 950–954 (1973),
http://dx.doi.org/10.1021/j100626a020
[18] I. Haller, H.A. Huggins, and M.H. Freiser, On the
measurement of indices of refraction of nematic liquid crystals,
Mol. Cryst. Liq. Cryst.
16, 53–59 (1972),
http://dx.doi.org/10.1080/15421407208083579
[19] M. Sharma, C. Kaur, J. Kumar, K.C. Singh, and P.C. Jain,
Phase transformations in some homologues of
4-n-alkyl-4'-cyanobiphenyls investigated by positron
annihilation spectroscopy, J. Phys. Condens. Matter.
13,
7249–7258 (2001),
http://dx.doi.org/10.1088/0953-8984/13/33/306
[20] I. Chirtoc, M. Chirtoc, C. Glorieux, and J. Thoen,
Determination of the order parameter and its critical exponent
for nCB (n = 5–8) liquid crystals from refractive index data,
Liq. Cryst.
31, 229–240 (2004),
http://dx.doi.org/10.1080/02678290310001642540
[21] R.-P. Pan, T.-R. Tsai, C.-Y. Chen, C.-H. Wang, and C.-L.
Pan, The refractive indices of nematic liquid crystal
4'-n-pentyl-4-cyanobiphenyl in the THz frequency range, Mol.
Cryst. Liq. Cryst.
409, 137–144 (2004),
http://dx.doi.org/10.1080/15421400490431039
[22] G. Chahine, A.N. Kityk, N. Demarest, F. Jean, K. Knorr, P.
Huber, R. Lefort, J.-M. Zanotti, and D. Morineau, Collective
molecular reorientation of a calamitic liquid crystal (12CB)
confined in alumina nanochannels, Phys. Rev. E
82,
011706 (2010),
http://dx.doi.org/10.1103/PhysRevE.82.011706
[23] T. Nose, S. Sato, K. Mizuno, J. Bae, and T. Nozukido,
Refractive index of nematic liquid crystals in the submillimeter
wave region, Appl. Opt.
36, 6383–6387 (1997),
http://dx.doi.org/10.1364/AO.36.006383
[24] S.K. Sarkar, P.C. Barman, and M.K. Das, Determination of
optical birefringent and orientational order parameter of four
members of alkyl cyanobiphenyls using high resolution
temperature scanning technique, Int. J. Res. Appl. Nat. Soc.
Sci.
1(4), 1–8 (2013)
http://www.impactjournals.us/download.php?fname=2-14-1378556225-1.%20Applied-Determination-MALAY%20KUMAR%20DAS.pdf
[25] S. Chandrasekhar and N.V. Madhusudana, Orientational order
in p-azoxyanisole, p-azoxyphenetole and their mixtures in
nematic phase, J. Phys. Colloques
30, C4–24 (1969),
http://dx.doi.org/10.1051/jphyscol:1969406
[26] N.V. Madhusudana and R. Pratibha, Elasticity and
orientational order in some cyanobiphenyls: Part IV. Reanalysis
of the data, Mol. Cryst. Liq. Cryst.
89, 249–257 (1982),
http://dx.doi.org/10.1080/00268948208074481
[27] T.N. Soorya, S. Gupta, A. Kumar, S. Jain, V.P. Arora, and
B. Bahadur, Temperature dependent optical property studies of
nematic mixtures, Indian J. Pure Appl. Phys.
44, 524–531
(2006),
http://www.niscair.res.in/ScienceCommunication/ResearchJournals/rejour/ijpap/ijpap2k6/ijpap_july06.asp#p524
[28] A. Kumar, Determination of orientational order and
effective geometry parameter from refractive indices of some
nematics, Liq. Cryst.
40, 503–510 (2013),
http://dx.doi.org/10.1080/02678292.2012.761355
[29] P.V. Adomenas, A.N. Nesrullajev, B.I. Ostrovski, A.Z.
Rabinovich, and A.S. Sonin, The change of the character of
smectic A–nematic phase transition in binary mixtures of liquid
crystals, Phys. Solid State
21, 2492–2496 (1979) [in
Russian]
[30] A.S. Sonin,
Introduction to the Physics of Liquid
Crystals (Science Publishing House, Moscow, 1983) [in
Russian]
[31] J.C. Tolédano and P. Tolédano,
The Landau Theory of
Phase Transitions (World Scientific, Singapore, 1987),
http://dx.doi.org/10.1142/0215
[32] M.A. Anisimov, Critical phenomena in liquid crystals, Mol.
Cryst. Liq. Cryst.
162(1), 1–96 (1988),
http://dx.doi.org/10.1080/00268948808083041
[33] R. Manohar and J.P. Shukla, Refractive indices, order
parameter and principal polarizability of cholesteric liquid
crystals and their homogeneous mixtures, J. Phys. Chem. Solids
65,
1643–1650 (2004),
http://dx.doi.org/10.1016/j.jpcs.2004.03.012
[34] W.H. de Jeu,
Physical Properties of Liquid Crystalline
Materials (Gordon and Breach, New York–London–Paris,
1980),
http://www.amazon.co.uk/Physical-Properties-Liquid-Mathematics-Applications/dp/0677040407/
[35] A. Prasad and M.K. Das, Optical birefringence studies of a
binary mixture with the nematic–smectic Ad–re-entrant nematic
phase sequence, J. Phys. Condens. Matter.
22, 1–7
(2010),
http://dx.doi.org/10.1088/0953-8984/22/19/195106
[36] M. Ramakrishna, N. Rao, P.V. Datta Prasad, and V.G.K.M.
Prisipati, Orientational order parameter in alkoxy benzoic acids
– Optical studies, Mol. Cryst. Liq. Cryst.
528, 49–63
(2010),
http://dx.doi.org/10.1080/15421406.2010.504515
[37] J.L. Kumari, P.V.D. Prasad, D.M. Latha, and V.G.K.M.
Pisipati, Orientational order parameter estimated from molecular
polarizabilities – an optical study, Phase Trans.
85,
52–64 (2012),
http://dx.doi.org/10.1080/01411594.2011.578826
[38] P.V. Datta Prasad and V.G.K.M. Pisipati, Simple, accurate
and low cost optical techniques for the measurement of 1.
Birefringence in liquid crystal and 2. Variation of the angle of
the small angled prism with temperature, Mol. Cryst. Liq. Cryst.
511, 102–111 (2009),
http://dx.doi.org/10.1080/15421400903048685
[39] W. Kuczynski, B.J. Zywicki, and J. Malecki, Determination
of orientational order parameter in various liquid crystalline
phases, Mol. Cryst. Liq. Cryst.
381, 1–19 (2002),
http://dx.doi.org/10.1080/713738745
[40] A.K. Srivastava, R. Manohar, and J.P. Shukla, Refractive
indices, order parameter and principal polarizability of
cholesteric liquid crystals and their mixtures, Mol. Cryst. Liq.
Cryst.
454, 225–234 (2006),
http://dx.doi.org/10.1080/15421400600654371
[41] S.S. Sastry, T.V. Kumari, S.S. Begum, and V.V. Rao,
Investigations into effective order geometry in a series of
liquid crystals, Liq. Cryst.
38, 277–285 (2011),
http://dx.doi.org/10.1080/02678292.2010.541947
[42] M.D. Gupta, A. Mukhopadhyay, and K. Czuprynski, Optical
properties of two liquid crystal compounds: a comparative study,
Phase Trans.
83, 284–292 (2010),
http://dx.doi.org/10.1080/01411591003704631
[43] C. Satiro and F. Moraes, On the deflection of light by
topological defects in nematics liquid crystals, Eur. Phys. J.
25,
425–429 (2008),
http://dx.doi.org/10.1140/epje/i2008-10309-4
[44] C. Satiro and F. Moraes, Lensing effects in a nematic
liquid crystal with topological defects, Eur. Phys. J. E
20,
173–178 (2006),
http://dx.doi.org/10.1140/epje/i2005-10127-2
[45] M.M.M. Abdoh, S.N.C. Shivaprakash, and J.S. Prasad,
Orientational order in the nematogenic homologous series
trans-4-alkyl (4-cyanobiphenyl)-cyclohexane, J. Chem. Phys.
77,
2570–2576 (1982),
http://dx.doi.org/10.1063/1.444129
[46] A. Kumar, Determination of orientational order and
effective geometry parameter from refractive indices of some
nematics, Liq. Cryst.
40, 503–510 (2013),
http://dx.doi.org/10.1080/02678292.2012.761355
[47] W.H. de Jeu and P. Bordewijk, Physical studies of nematic
azoxybenzenes. II. Refractive indices and the internal field, J.
Chem. Phys.
68, 109–115 (1978),
http://dx.doi.org/10.1063/1.435499
[48] W.L. McMillan, Simple molecular model for the smectic A
phase of liquid crystals, Phys. Rev. A
4, 1238–1246
(1971),
http://dx.doi.org/10.1103/PhysRevA.4.1238
[49] P.G. de Gennes and J. Prost,
The Physics of Liquid
Crystals (Oxford Science Publications, Oxford–London,
2003),
http://ukcatalogue.oup.com/product/9780198517856.do
[50] P.G. de Gennes,
The Physics of Liquid Crystals
(Clarendon Press, Oxford–London, 1973)
[51] G. Chahine, A.N. Kityk, K. Knorr, R. Lefort, M. Guendouz,
D. Morineau, and P. Huber, Criticality of an
isotropic-to-smectic transition induced by anisotropic quenched
disorder, Phys. Rev. E
81, 031703 (2010),
http://dx.doi.org/10.1103/PhysRevE.81.031703
[52] B.M. Ocko, A. Braslau, P.S. Pershan, J. Als-Nielsen, and M.
Deursch, Quantized layer growth at liquid-crystal surfaces,
Phys. Rev. Lett.
57, 94–97 (1986),
http://dx.doi.org/10.1103/PhysRevLett.57.94
[53] A. Nesrullajev and Ş. Oktik, Induced changes of smectic
A–isotropic liquid phase transition peculiarities: Effect of
surfaces, Mod. Phys. Lett. B
14, 821–833 (2006),
http://dx.doi.org/10.1142/S0217984906010755
[54] N. Yilmaz-Canli, A. Nesrullajev, and B. Bilgin Eran,
Synthesis, mesomorphic and physical properties of two new
analogs of Schiff's base with an alkenic terminal chains, J.
Mol. Str.
990, 79–85 (2011),
http://dx.doi.org/10.1016/j.molstruc.2010.12.056
[55] A. Drozd-Rzoska, Influence of measurement frequency on the
pretransitional behaviour of the nolinear dielectric effect in
the isotropic phase of liquid crystalline materials, Liq. Cryst.
24, 835–840 (1998),
http://dx.doi.org/10.1080/026782998206650
[56] A. Drozd-Rzoska, S.J. Rzoska, and J. Ziolo, Quasicritical
behaviour of dielectric permittivity in the isotropic phase of
smectogenic n-cyanobiphenyls, Phys. Rev. E
61, 5349–5344
(2000),
http://dx.doi.org/10.1103/PhysRevE.61.5349
[57] S.G. Polushin, V.B. Rogozhin, E.I. Ryumtsev, and A.L.
Lezov, The kerr effect in the vicinity of the transition from
the isotropic to smectic A phase, Russ. J. Phys. Chem.
80,
1016–1020 (2006),
http://dx.doi.org/10.1134/S0036024406070028
[58] S.J. Rzoska, P.K. Mukherjee, and M. Rutkowska, Does the
characteristic value of the discontinuity of the
isotropic–mesophase transition in n-cyanobiphenyls exist? J.
Phys. Condens. Matter.
24, 375101 (2012),
http://dx.doi.org/10.1088/0953-8984/24/37/375101
[59] K.P. Sidgel and G.S. Innachione, Study of the isotropic to
smectic-A phase transition in liquid crystal and acetone binary
mixtures, J. Chem. Phys.
133, 174501 (2010),
http://dx.doi.org/10.1063/1.3502112
[60] M. Olbrich, H.R. Brand, H. Finkelmann, and K. Kavasaki,
Fluctuations above the smectic-A–isotropic transition in liquid
crystalline elastomers under external stress, Europhys. Lett.
31,
281–286 (1995),
http://dx.doi.org/10.1209/0295-5075/31/5-6/006
[61] G. Gordoyiannis, L.F.V. Pinto, M.H. Godinho, C. Glorieux,
and J. Thoen, High-resolution calorimetric study of the phase
transitions of tridecylcyanobiphenyl and terradecylcyanobiphenyl
liquid crystals, Phase Trans.
82, 280–289 (2009),
http://dx.doi.org/10.1080/01411590902858720
[62] H. Pleiner, P.K. Mukherjee, and H.R. Brand, Direct
transitions from isotropic to smectic phases, in:
Proceedings
of the 29th Freiburger Arbeitstagung Flüssigkristalle
(2000) pp. 59–62
[63] H.R. Brand, P.K. Mukherjee, and H. Pleiner, Macroscopic
dynamics near the isotropic–smectic-A phase transition, Phys.
Rev. E
63, 061708–1 (2001),
http://dx.doi.org/10.1103/PhysRevE.63.061708
[64] P.K. Mukherjee, H. Pleiner, and H.R. Brand, Simple Landau
model of the smectic-A–isotropic phase transition, Eur. Phys. J.
4, 293–297 (2001),
http://dx.doi.org/10.1007/s101890170111
[65] P.K. Mukherjee and S.J. Rzoska, Pressure effect on the
smectic-A–isotropic phase transition, Phys. Rev. E
65,
051705 (2002),
http://dx.doi.org/10.1103/PhysRevE.65.051705
[66] P.K. Mukherjee, Isotropic to smectic-A phase transition: A
review, J. Mol. Liq.,
190, 99–111 (2014),
http://dx.doi.org/10.1016/j.molliq.2013.11.001