Received 16 December 2014; revised 1 February 2015; accepted 20
March 2015
TRIJŲ ELEKTRODŲ PE CVD KAMEROJE
UŽAUGINTŲ SILICIO NITRIDO SLUOKSNIŲ TYRIMAS
Silano ir argono (5 % SiH4, 95 %
Ar) dujų mišiniai bei azoto dujos buvo naudojami silicio nitrido
sluoksnių gamybai dviejų ir trijų elektrodų cheminio garų
nusodinimo (CVD) kamerose. Sluoksniai buvo formuojami tuo pačiu
metu ant CaF2 kristalo ir aliuminiu padengto
stiklinio padėklo, įkaitintų iki 300 °C. Keičiant injektuojamų
dujų santykį silicio nitrido draustinės juostos tarpas kito nuo
1,85 eV iki 5,15 eV. Atominės jėgos mikroskopu nustatyta, kad
trijų elektrodų kameroje užaugintų bandinių paviršiaus nelygumas
mažesnis. Elektriniai matavimai atskleidė, kad trijų elektrodų
kameroje užauginti sluoksniai pasižymi mažesne nuotėkio srove ir
aukštesne pramušimo įtampa. Silicio nitrido sudėtis buvo tiriama
Rentgeno spindulių dispersijos (EDS) ir Furje spektrometrijos
(FTIR) metodais. Naudojant elipsometrinę spektroskopinę analizę
ir taikant Tauco–Lorenzo modelį įvertinti sluoksnių lūžio
rodikliai, kurie leido nustatyti silicio nitrido sluoksnio
sudėtį.
References
/
Nuorodos
[1] V. Verlaan, C.H.M.
van der Werf, Z.S. Houweling, I.G. Romijn, A.W. Weeber, H.F.W.
Dekkers, H.D. Goldbach, and R.E.I. Schropp, Multi-crystalline Si
solar cells with very fast deposited (180 nm/min) passivating
hot-wire CVD silicon nitride as antireflection coating, Prog.
Photovolt. Res. Appl.
15(7), 563–573 (2007),
http://dx.doi.org/10.1002/pip.760
[2] A.K. Sinha, H.J. Levinstein, T.E. Smith, G. Quintana, and
S.E. Haszko, Reactive plasma deposited Si‐N films for MOS‐LSI
passivation, J. Electrochem. Soc.
125(4), 601–608
(1978),
http://dx.doi.org/10.1149/1.2131509
[3] L. Pavesi, Will silicon be the photonic material of the
third millenium? J. Phys. Condens. Matter.
15,
R1169–R1196 (2003),
http://dx.doi.org/10.1088/0953-8984/15/26/201
[4] C.J. Oliphant, C.J. Arendse, T.F.G. Muller, and D. Knoesen,
Characterization of silicon nitride thin films deposited by
hot-wire CVD at low gas flow rates, Appl. Surf. Sci.
285,
440–449 (2013),
http://dx.doi.org/10.1016/j.apsusc.2013.08.075
[5] M. Wang, X. Huang, J. Xu, W. Li, Z. Liu, and K. Chen,
Observation of the size-dependent blue-shifted
electroluminescence from nanocrystalline Si fabricated by KrF
excimer laser annealing of hydrogenated amorphous
silicon/amorphous-SiN
x:H superlattices, Appl.
Phys. Lett.
72, 722–724 (1998),
http://dx.doi.org/10.1063/1.120857
[6] R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W.
Li, J. Xu, and Z. Ma, Role of barrier layers in
electroluminescence from SiN-based multilayer light-emitting
devices, Appl. Phys. Lett.
92, 181106 (2008),
http://dx.doi.org/10.1063/1.2920819
[7] S. Okada and H. Matsumara, Improved properties of silicon
nitride films prepared by the catalytic chemical vapour
deposition method, Jpn. J. Appl. Phys.
36, 7035–7040
(1997),
http://dx.doi.org/10.1143/JJAP.36.7035
[8] Q. Cheng, S. Xu, and K.K. Ostrikov, Controlled-bandgap
silicon nitride nanomaterials: deterministic nitrogenation in
high-density plasmas, J. Mater. Chem.
20, 5853–5859
(2010),
http://dx.doi.org/10.1039/C0JM01060J
[9] D. Drouin, A. Couture, D. Joly, X. Tastet, V. Aimez, and R.
Gauvin, CASINO V2.42: a fast and easy-to-use modeling tool for
scanning electron microscopy and microanalysis users, Scanning
29,
92–101 (2007),
http://dx.doi.org/10.1002/sca.20000
[10] J.C. Tauc,
Optical Properties of Solids
(North-Holland, Amsterdam, 1972),
http://www.amazon.co.uk/Optical-Properties-Solids-J-Tauc/dp/B0010ZRRSW/
[11] Q. Xu, Y. Ra, M. Bachman, and G.P. Li, Characterization of
low-temperature silicon nitride films produced by inductively
coupled plasma chemical vapour deposition, J. Vac. Sci. Technol.
A
145, 145–156 (2009),
http://dx.doi.org/10.1116/1.3054133
[12] S.M. Sze, Physics of Semiconductor Devices (John Wiley
& Sons Inc., New York, 1969),
http://dx.doi.org/10.1002/0470068329
[13] C. Kittel,
Introduction to Solid State Physics, 8th
ed., Ch. 7 (John Wiley & Sons Inc., New York, 2005),
http://www.amazon.co.uk/Introduction-Solid-Physics-Charles-Kittel/dp/047141526X/
[14] E.H. Nicollian and J.R. Brews,
MOS (Metal Oxide
Semiconductor) Physics and Technology (Wiley, New York,
2002),
http://dx.doi.org/10.1116/1.571867
[15] A. Piccirillo and A.L. Gobbi, Physical‐electrical
properties of silicon nitride deposited by PECVD on III–V
semiconductors, J. Electrochem. Soc.
137, 3910–3917
(1990),
http://dx.doi.org/10.1149/1.2086326
[16] P.R. Griffiths and J.A. de Haseth,
Fourier Transform
Infrared Spectrometry, 2nd ed. (John Wiley & Sons
Inc., New Jersey, 2007),
http://dx.doi.org/10.1002/9780470106310.fmatter
[17] M.H. Brodsky, M. Cardona, and J.J. Cuomo, Infrared and
Raman spectra of the silicon-hydrogen bonds in amorphous silicon
prepared by glow discharge and sputtering, Phys. Rev. B
16,
3556–3571 (1977),
http://dx.doi.org/10.1103/PhysRevB.16.3556
[18] G. Lucovsky, J. Yang, S.S. Chao, J.E. Tyler, and W.
Czubatyj, Nitrogen-bonding environments in
glow-discharge-deposited a-Si:H films, Phys. Rev. B
28,
3234–3240 (1983),
http://dx.doi.org/10.1103/PhysRevB.28.3234
[19] D.V. Tsu, G. Lucovsky, and M.J. Mantini, Local atomic
structure in thin films of silicon nitride and silicon diimide
produced by remote plasma-enhanced chemical-vapor deposition,
Phys. Rev. B
33, 7069–7076 (1986),
http://dx.doi.org/10.1103/PhysRevB.33.7069
[20] W.A. Lanford and M.J. Rand, The hydrogen content of
plasma‐deposited silicon nitride, J. Appl. Phys.
49(4),
2473–2477 (1978),
http://dx.doi.org/10.1063/1.325095
[21] W.A.P. Claassen, W.G.J.N. Valkenburg, F.H.P.M. Habraken,
and Y. Tamminga, Characterization of plasma silicon nitride
layers, J. Electrochem. Soc.
130, 2419–2423 (1983),
http://dx.doi.org/10.1149/1.2119600
[22] G.E. Jellison Jr., V.I. Merkulov, A.A. Puretzky, D.B.
Geohegan, G. Eres, D.H. Lowndes, and J.B. Caughman,
Characterization of thin-film amorphous semiconductors using
spectroscopic ellipsometry, Thin Solid Films
377–378,
68–73 (2000),
http://dx.doi.org/10.1016/S0040-6090(00)01384-5
[23] E. Bustarret, M. Bensouda, M. Habrard, J. Bruyère, S.
Poulin, and S. Gujrathi, Configurational statistics in a-Si
xN
yH
z
alloys: A quantitative bonding analysis, Phys. Rev. B
38(12),
8171–8184 (1988),
http://dx.doi.org/10.1103/PhysRevB.38.8171
[24] J.J. Mei, H. Chen, and W.Z. Shen, Optical properties and
local bonding configurations of hydrogenated amorphous silicon
nitride thin films, J. Appl. Phys.
100(7), 073516
(2006),
http://dx.doi.org/10.1063/1.2356915
[25] M. Wang, J. Huang, Z. Yuan, and A. Anopchenko, Light
emission properties and mechanism of low-temperature prepared
amorphous SiN
x films. II. Defect states
electroluminescence, Appl. Phys.
104, 083505 (2008),
http://dx.doi.org/10.1063/1.2996299
[26] B. Rezgui, A. Sibai, T. Nychyporuk, M. Lemiti, and G.
Bremond, Effect of total pressure on the formation and size
evolution of silicon quantum dots in silicon nitride films,
Appl. Phys. Lett.
96, 183105 (2010),
http://dx.doi.org/10.1063/1.3427386
[27] G. Scardera, T. Puzzer, G. Conibeer, and M.A. Green,
Fourier transform infrared spectroscopy of annealed silicon-rich
silicon nitride thin films, J. Appl. Phys.
104, 104310
(2008),
http://dx.doi.org/10.1063/1.3021158
[28] G.M. Samuelson and K.M. Mar, The correlations between
physical and electrical properties of PECVD SiN with their
composition ratios, J. Electrochem. Soc.
129, 1773–1778
(1982),
http://dx.doi.org/10.1149/1.2124291