Received 13 October 2014; revised 10 November 2014; accepted 10
December 2014
2013 m. liepos mėn. Sianghe
mieste (Hebėjaus provincija, Kinija) vykdytų išskirtinių
aerozolio dalelių fizikinių-cheminių savybių tyrimų metu buvo
tirtas retas naktinis dalelių susidarymas ir jį lemiančios
priežastys. Panaudojus moderniausią spektrometrinę aerozolio
dalelių matavimo įrangą nustatyta, kad naujų dalelių susidarymas
vyko esant aukštam kondensaciniam nuotėkiui, CS = 0,055 s–1,
dalelių susidarymo sparta naktį buvo 1,25 kartus didesnė nei
dieną, siekė 45 ± 5 cm–3 s–1. Naujų
dalelių susidarymo metu skaitinė 2–10 nm dydžio dalelių
koncentracijos reikšmė padidėjo nuo N2–10 nm
= 2,0 · 104 ± 2000 cm–3 iki N2–10
nm = 7,3 · 104 ± 7300 cm–3. Naujai
susidariusios 20–35 nm dydžio dalelės pasižymėjo itin dideliu
lakumu ir mažu higroskopiškumu. Po dalelių išgarinimo 300 °C
temperatūroje buvo užregistruota tik smulki liekamoji frakcija
antrojo diferencialinio dalelių judrio analizatoriaus išėjime.
Ši frakcija siejama su dalelėse vykstančiu polimerizacijos
vyksmu, kai ant jos paviršiaus kondensuojasi organiniai
junginiai. Naujai susiformavusių aerozolio dalelių populiacija,
patekusi į 87 % santykinės oro drėgmės kamerą, augo vienodai ir
pasižymėjo GF = 1,15 augimo koeficientu. Atlikus
vietovės galimų šaltinių analizę nustatyta, kad naktinis naujų
dalelių susidarymas yra nulemtas aukštos santykinės oro drėgmės
(>98 %), vėjo krypties ir iš gyvenamųjų teritorijų atnešamų
lakiosios organikos (amino) ir NH3 junginių.
References
/
Nuorodos
[1] I. Tegen, D. Koch,
A.A. Lacis, and M. Sato, Trends in tropospheric aerosol loads
and corresponding impact on direct radiative forcing between
1950 and 1990: A model study, J. Geophys. Res.
105,
26971–26989 (2000),
http://dx.doi.org/10.1029/2000JD900280
[2] X. Tie, D. Wu, and G. Brasseur, Lung cancer mortality and
exposure to atmospheric aerosol particles in Guangzhou, China,
Atmos. Environ.
43(14), 2375–2377 (2009),
http://dx.doi.org/10.1016/j.atmosenv.2009.01.036
[3] M. Kulmala, H. Vehkamaki, T. Petäjä, M. Dal Maso, A. Lauri,
V.-M. Kerminen, W. Birmili, and P.H. McMurry, Formation and
growth rates of ultrafine atmospheric particles: A review of
observations, J. Aerosol Sci.
35, 143–176 (2004),
http://dx.doi.org/10.1016/j.jaerosci.2003.10.003
[4] H. Yu, R. McGraw, and S.H. Lee, Effects of amines on
formation of sub‐3 nm particles and their subsequent growth,
Geophys. Res. Lett.
39(2), L02807 (2012),
http://dx.doi.org/10.1029/2011GL050099
[5] B. Wehner, A. Wiedensohler, T.M. Tuch, Z.J. Wu, M. Hu, J.
Slanina, and C.S. Kiang, Variability of the aerosol number size
distribution in Beijing, China: New particle formation, dust
storms, and high continental background, Geophys. Res. Lett.
31,
L22108 (2004),
http://dx.doi.org/10.1029/2004GL021596
[6] Z. Wu, M. Hu, S. Liu, B. Wehner, S. Bauer, A. Wiedensohler,
et al., New particle formation in Beijing, China: Statistical
analysis of a 1‐year data set, J. Geophys. Res.
112(D9),
D09209 (2007),
http://dx.doi.org/10.1029/2006JD007406
[7] J.R. Pierce, W.R. Leaitch, J. Liggio, et al., Nucleation and
condensational growth to CCN sizes during a sustained pristine
biogenic SOA event in a forested mountain valley, Atmos. Chem.
Phys.
12, 3147–3163 (2012),
http://dx.doi.org/10.5194/acp-12-3147-2012
[8] M.J. Dunn, J.-L. Jimenez, D. Baumgardner, T. Castro, P.H.
McMurry, and J.N. Smith, Measurements of Mexico City
nanoparticle size distributions: Observations of new particle
formation and growth, J. Geophys. Lett.
31, LI10102
(2004),
http://dx.doi.org/10.1029/2004GL019483
[9] A. Wiedensohler, H.-C. Hansson, D. Orsini, et al.,
Night-time formation and occurrence of new particles associated
with orographic clouds, Atmos. Environ.
31, 2545–2559
(1997),
http://dx.doi.org/10.1016/S1352-2310(96)00299-3
[10] S.-H. Lee, L.-H. Young, D.R. Benson, et al., Observations
of nighttime new particle formation in the troposphere, J.
Geophys. Res.
113, D10210 (2008),
http://dx.doi.org/10.1029/2007JD009351
[11] T. Suni, M. Kulmala, A. Hirsikko, et al., Formation and
characteristics of ions and charged aerosol particles in a
native Australian Eucalypt forest, Atmos. Chem. Phys.
8,
129–139 (2008),
http://dx.doi.org/10.5194/acp-8-129-2008
[12] M. Kulmala and A. Laaksonen, Binary nucleation of
water–sulfuric acid system: Comparison of classical theories
with different H
2SO
4 saturation vapor
pressures, J. Chem. Phys.
93(1), 696–701 (1990),
http://dx.doi.org/10.1063/1.459519
[13] P. Korhonen, M. Kulmala, A. Laaksonen, Y. Viisanen, R.
McGraw, and J.H. Seinfeld, Ternary nucleation of H
2SO
4,
NH
3, and H
2O in the atmosphere, J.
Geophys. Res.
104(D21), 26349–26353 (1999),
http://dx.doi.org/10.1029/1999JD900784
[14] N. Ma, C.S. Zhao, A. Nowak, et al., Aerosol optical
properties in the North China Plain during HaChi campaign: an
in-situ optical closure study, Atmos. Chem. Phys.
11,
5959–5973 (2011),
http://dx.doi.org/10.5194/acp-11-5959-2011
[15] I.K. Ortega, T. Suni, M. Boy, et al., New insights into
nocturnal nucleation, Atmos. Chem. Phys.
12, 4297–4312
(2012),
http://dx.doi.org/10.5194/acp-12-4297-2012
[16] S.S. Brown, W.P. Dube, J. Peischl, et al., Budgets for
nocturnal VOC oxidation by nitrate radicals aloft during the
2006 Texas Air Quality Study, J. Geophys. Res.
116,
D24305 (2011),
http://dx.doi.org/10.1029/2011JD016544
[17] Z.Z. Deng, C.S. Zhao, N. Ma, et al., Size-resolved and bulk
activation properties of aerosols in the North China Plain,
Atmos. Chem. Phys.
11, 3835–3846 (2011),
http://dx.doi.org/10.5194/acp-11-3835-2011
[18] L. Wang, J. Yang, P. Zhang, et al., A review of air
pollution and control in Hebei Province, China, Open J. Air
Pollut.
2(03), 47 (2013),
http://dx.doi.org/10.4236/ojap.2013.23007
[19] T.M. Tuch, A. Haudek, T. Muller, A. Nowak, H. Wex, and A.
Wiedensohler, Design and performance of an automatic
regenerating adsorption aerosol dryer for continuous operation
at monitoring sites, Atmos. Meas. Tech.
2, 417–422
(2009),
http://dx.doi.org/10.5194/amt-2-417-2009
[20] A. Wiedensohler, W. Birmili, A. Nowak, et al., Mobility
particle size spectrometers: harmonization of technical
standards and data structure to facilitate high quality
long-term observations of atmospheric particle number size
distributions, Atmos. Meas. Tech.
5, 657–685 (2012),
http://dx.doi.org/10.5194/amt-5-657-2012
[21] S. Mirme and A. Mirme, The mathematical principles and
design of the NAIS – a spectrometer for the measurement of
cluster ion and nanometer aerosol size distributions, Atmos.
Meas. Tech.
6(4), 1061–1071 (2013),
http://dx.doi.org/10.5194/amt-6-1061-2013
[22] M. Kulmala, I. Riipinen, M. Sipilä, et al., Toward direct
measurement of atmospheric nucleation, Science
318(5847),
89–92 (2007),
http://dx.doi.org/10.1126/science.1144124
[23] A. Massling, S. Leinert, A. Wiedensohler, and D. Covert,
Hygroscopic growth of sub-micrometer and one-micrometer aerosol
particles measured during ACE-Asia, Atmos. Chem. Phys.
7(12),
3249–3259 (2007),
http://dx.doi.org/10.5194/acp-7-3249-2007
[24] I.N. Tang and H.R. Munkelwitz, Water activities, densities,
and refractive indices of aqueous sulfates and sodium nitrate
droplets of atmospheric importance, J. Geophys. Res.
99(D9),
18801–18808 (1994),
http://dx.doi.org/10.1029/94JD01345
[25] S. Philippin, A. Wiedensohler, and F. Stratmann,
Measurements of non-volatile fractions of pollution aerosols
with an eight-tube volatility tandem differential mobility
analyzer (VTDMA-8), J. Aerosol Sci.
35(2), 185–203
(2004),
http://dx.doi.org/10.1016/j.jaerosci.2003.07.004
[26] H. Burtscher, U. Baltensperger, N. Bukowiecki, et al.,
Separation of volatile and non-volatile aerosol fractions by
thermodesorption: instrumental development and applications, J.
Aerosol Sci.
32(4), 427–442 (2001),
http://dx.doi.org/10.1016/S0021-8502(00)00089-6
[27] M. Dal Maso, M. Kulmala, I. Riipinen, R. Wagner, T.
Hussein, P.P. Aalto, and K.E. Lehtinen, Formation and growth of
fresh atmospheric aerosols: eight years of aerosol size
distribution data from SMEAR II, Hyytiala, Finland, Boreal
Environ. Res.
10(5), 323 (2005),
http://www.borenv.net/BER/pdfs/ber10/ber10-323.pdf
[28] Y.F. Cheng, M. Berghof, R.M. Garland, et al., Influence of
soot mixing state on aerosol light absorption and single
scattering albedo during air mass aging at a polluted regional
site in northeastern China, J. Geophys. Res.
114, D00G10
(2009),
http://dx.doi.org/10.1029/2008JD010883
[29] W. Birmili, F. Stratmann, A. Wiedensohler, D. Covert, L.M.
Russell, and O. Berg, Determination of differential mobility
analyzer transfer functions using identical instruments in
series, Aerosol Sci. Technol.
27(2), 215–223 (1997),
http://dx.doi.org/10.1080/02786829708965468
[30] M. Gysel, G.B. McFiggans, and H. Coe, Inversion of tandem
differential mobility analyser (TDMA) measurements, J. Aerosol
Sci.
40(2), 134–151 (2009),
http://dx.doi.org/10.1016/j.jaerosci.2008.07.013
[31] H.E. Manninen, T. Nieminen, I. Riipinen, et al., Charged
and total particle formation and growth rates during EUCAARI
2007 campaign in Hyytiälä, Atmos. Chem. Phys.
9(12),
4077–4089 (2009),
http://dx.doi.org/10.5194/acp-9-4077-2009
[32] J. Heintzenberg, B. Wehner, and W. Birmili, 'How to find
bananas in the atmospheric aerosol': new approach for analyzing
atmospheric nucleation and growth events, Tellus B
59(2),
273–282 (2007),
http://dx.doi.org/10.1111/j.1600-0889.2007.00249.x
[33] L. Ran, W-L. Lin, P-C. Wang, and Z-Z. Deng, Surface trace
gases at a rural site between the megacities of Beijing and
Tianjin, Atmos. Ocean. Sci. Lett.
7(3), 230 (2014),
http://dx.doi.org/10.3878/j.issn.1674-2834.13.0115
[34] S.S. Brown, T.B. Ryerson, A.G. Wollny, et al., Variability
in nocturnal nitrogen oxide processing and its role in regional
air quality, Science
311(5757), 67–70 (2006),
http://dx.doi.org/10.1126/science.1120120
[35] N.M. Donahue, J.H. Kroll, J.G. Anderson, and K.L.
Demerjian, Direct observation of OH production from the
ozonolysis of olefins, Geophys. Res. Lett.
25(1), 59–62
(1998),
http://dx.doi.org/10.1029/97GL53560
[36] S.S. Brown, H. Stark, T.B. Ryerson, et al., Nitrogen oxides
in the nocturnal boundary layer: Simultaneous in situ
measurements of NO
3, N
2O
5, NO
2,
NO, and O
3, J. Geophys. Res.
108(D9), 4299
(2003),
http://dx.doi.org/10.1029/2002JD002917
[37] A. Geyer, B. Alicke, S. Konrad, T. Schmitz, J. Stutz, and
U. Platt, Chemistry and oxidation capacity of the nitrate
radical in the continental boundary layer near Berlin, J.
Geophys. Res.
106(D8), 8013–8025 (2001),
http://dx.doi.org/10.1029/2000JD900681
[38] H. Sakurai, M.A. Fink, P.H. McMurry, L. Mauldin, K.F.
Moore, J.N. Smith, and F.L. Eisele, Hygroscopicity and
volatility of 4–10 nm particles during summertime atmospheric
nucleation events in urban Atlanta, J. Geophys. Res.
110,
D22504 (2005),
http://dx.doi.org/10.1029/2005JD005918
[39] R. Zhang, A. Khalizov, L. Wang, M. Hu, and W. Xu,
Nucleation and growth of nanoparticles in the atmosphere, Chem.
Rev.
112(3), 1957–2011 (2011),
http://dx.doi.org/10.1021/cr2001756
[40] U. Kuhn, J. Sintermann, C. Spirig, M. Jocher, C. Ammann,
and A. Neftel, Basic biogenic aerosol precursors: Agricultural
source attribution of volatile amines revised, Geophys. Res.
Lett.
38(16), L16811 (2011),
http://dx.doi.org/10.1029/2011GL047958
[41] T. Berndt, F. Stratmann, M. Sipilä, et al., Laboratory
study on new particle formation from the reaction OH+SO
2:
influence of experimental conditions, H
2O vapour, NH
3
and the amine tert-butylamine on the overall process, Atmos.
Chem. Phys.
10(15), 7101–7116 (2010),
http://dx.doi.org/10.5194/acp-10-7101-2010
[42] M.E. Erupe, A.A. Viggiano, and S.H. Lee, The effect of
trimethylamine on atmospheric nucleation involving H
2SO
4,
Atmos. Chem. Phys.
11(10), 4767–4775, (2011),
http://dx.doi.org/10.5194/acp-11-4767-2011
[43] H. Yu, R. McGraw, and S.H. Lee, Effects of amines on
formation of sub‐3 nm particles and their subsequent growth,
Geophys. Res. Lett.
39(2), L02807 (2012),
http://dx.doi.org/10.1029/2011GL050099