[PDF]    http://dx.doi.org/10.3952/physics.v55i1.3057

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 4453 (2015)


NOCTURNAL AEROSOL PARTICLE FORMATION IN THE NORTH CHINA PLAIN
Simonas Kecoriusa,b, Shenglan Zhangb,c,d, Zhibin Wangb,e, Johannes Größb, Nan Mab, Zhijun Wuf, Liang Ranc, Min Huf, Pucai Wangc, Vidmantas Ulevičiusa, and Alfred Wiedensohlerb
aCenter for Physical Sciences and Technology, Savanorių Ave. 231, LT-02300 Vilnius, Lithuania
bLeibniz Institute for Tropospheric Research, Leipzig 04318, Germany
E-mail: ma@tropos.de
cKey Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
dChengdu University of Information Technology, Chengdu 610225, China
eMultiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
fCollege of Environmental Sciences and Engineering, Peking University, Beijing 100871, China

Received 13 October 2014; revised 10 November 2014; accepted 10 December 2014

New particle formation is one of the major sources of atmospheric aerosol particles. Beside daytime nucleation, nocturnal new particle formation was also found in different regions around the world. Compared with daytime nucleation events, the understanding of nocturnal ones is still sparse. The variety of aerosol particle physico-chemical properties, including particle number size distribution, volatility and hygroscopicity were measured in the North China Plain during July–August 2013. During the observation period, rapid increase in ultrafine particle number concentration was attributed to new particle formation. The nocturnal new particle formation rate was 45 cm–3s–1, which is 1.25 times higher than an observed daytime value. Condensation sink was found to be 0.055 s–1.
Keywords: nocturnal nucleation, particle number size distribution
PACS: 92.60.Mt

NAKTINIS AEROZOLIO DALELIŲ SUSIDARYMAS ŠIAURINĖJE KINIJOS LYGUMOJE

Simonas Kecoriusa,b, Shenglan Zhangb,c,d, Zhibin Wangb,e, Johannes Größb, Nan Mab, Zhijun Wuf, Liang Ranc, Min Huf, Pucai Wangc, Vidmantas Ulevičiusa, Alfred Wiedensohlerb
aValstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
bLeibnico troposferos tyrimų institutas, Leipcigas, Vokietija
cKinijos mokslų akademijos Atmosferos fizikos institutas, Pekinas, Kinija
dČengdu informacijos technologijos universitetas, Čengdu, Kinija
eMakso Planko chemijos institutas, Maincas, Vokietija
fPekino universiteto Aplinkos mokslų ir inžinerijos koledžas, Pekinas, Kinija

2013 m. liepos mėn. Sianghe mieste (Hebėjaus provincija, Kinija) vykdytų išskirtinių aerozolio dalelių fizikinių-cheminių savybių tyrimų metu buvo tirtas retas naktinis dalelių susidarymas ir jį lemiančios priežastys. Panaudojus moderniausią spektrometrinę aerozolio dalelių matavimo įrangą nustatyta, kad naujų dalelių susidarymas vyko esant aukštam kondensaciniam nuotėkiui, CS = 0,055 s–1, dalelių susidarymo sparta naktį buvo 1,25 kartus didesnė nei dieną, siekė 45 ± 5 cm–3 s–1. Naujų dalelių susidarymo metu skaitinė 2–10 nm dydžio dalelių koncentracijos reikšmė padidėjo nuo N2–10 nm = 2,0 · 104 ± 2000 cm–3 iki N2–10 nm = 7,3 · 104 ± 7300 cm–3. Naujai susidariusios 20–35 nm dydžio dalelės pasižymėjo itin dideliu lakumu ir mažu higroskopiškumu. Po dalelių išgarinimo 300 °C temperatūroje buvo užregistruota tik smulki liekamoji frakcija antrojo diferencialinio dalelių judrio analizatoriaus išėjime. Ši frakcija siejama su dalelėse vykstančiu polimerizacijos vyksmu, kai ant jos paviršiaus kondensuojasi organiniai junginiai. Naujai susiformavusių aerozolio dalelių populiacija, patekusi į 87 % santykinės oro drėgmės kamerą, augo vienodai ir pasižymėjo GF = 1,15 augimo koeficientu. Atlikus vietovės galimų šaltinių analizę nustatyta, kad naktinis naujų dalelių susidarymas yra nulemtas aukštos santykinės oro drėgmės (>98 %), vėjo krypties ir iš gyvenamųjų teritorijų atnešamų lakiosios organikos (amino) ir NH3 junginių.

References / Nuorodos

[1] I. Tegen, D. Koch, A.A. Lacis, and M. Sato, Trends in tropospheric aerosol loads and corresponding impact on direct radiative forcing between 1950 and 1990: A model study, J. Geophys. Res. 105, 26971–26989 (2000),
http://dx.doi.org/10.1029/2000JD900280
[2] X. Tie, D. Wu, and G. Brasseur, Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China, Atmos. Environ. 43(14), 2375–2377 (2009),
http://dx.doi.org/10.1016/j.atmosenv.2009.01.036
[3] M. Kulmala, H. Vehkamaki, T. Petäjä, M. Dal Maso, A. Lauri, V.-M. Kerminen, W. Birmili, and P.H. McMurry, Formation and growth rates of ultrafine atmospheric particles: A review of observations, J. Aerosol Sci. 35, 143–176 (2004),
http://dx.doi.org/10.1016/j.jaerosci.2003.10.003
[4] H. Yu, R. McGraw, and S.H. Lee, Effects of amines on formation of sub‐3 nm particles and their subsequent growth, Geophys. Res. Lett. 39(2), L02807 (2012),
http://dx.doi.org/10.1029/2011GL050099
[5] B. Wehner, A. Wiedensohler, T.M. Tuch, Z.J. Wu, M. Hu, J. Slanina, and C.S. Kiang, Variability of the aerosol number size distribution in Beijing, China: New particle formation, dust storms, and high continental background, Geophys. Res. Lett. 31, L22108 (2004),
http://dx.doi.org/10.1029/2004GL021596
[6] Z. Wu, M. Hu, S. Liu, B. Wehner, S. Bauer, A. Wiedensohler, et al., New particle formation in Beijing, China: Statistical analysis of a 1‐year data set, J. Geophys. Res. 112(D9), D09209 (2007),
http://dx.doi.org/10.1029/2006JD007406
[7] J.R. Pierce, W.R. Leaitch, J. Liggio, et al., Nucleation and condensational growth to CCN sizes during a sustained pristine biogenic SOA event in a forested mountain valley, Atmos. Chem. Phys. 12, 3147–3163 (2012),
http://dx.doi.org/10.5194/acp-12-3147-2012
[8] M.J. Dunn, J.-L. Jimenez, D. Baumgardner, T. Castro, P.H. McMurry, and J.N. Smith, Measurements of Mexico City nanoparticle size distributions: Observations of new particle formation and growth, J. Geophys. Lett. 31, LI10102 (2004),
http://dx.doi.org/10.1029/2004GL019483
[9] A. Wiedensohler, H.-C. Hansson, D. Orsini, et al., Night-time formation and occurrence of new particles associated with orographic clouds, Atmos. Environ. 31, 2545–2559 (1997),
http://dx.doi.org/10.1016/S1352-2310(96)00299-3
[10] S.-H. Lee, L.-H. Young, D.R. Benson, et al., Observations of nighttime new particle formation in the troposphere, J. Geophys. Res. 113, D10210 (2008),
http://dx.doi.org/10.1029/2007JD009351
[11] T. Suni, M. Kulmala, A. Hirsikko, et al., Formation and characteristics of ions and charged aerosol particles in a native Australian Eucalypt forest, Atmos. Chem. Phys. 8, 129–139 (2008),
http://dx.doi.org/10.5194/acp-8-129-2008
[12] M. Kulmala and A. Laaksonen, Binary nucleation of water–sulfuric acid system: Comparison of classical theories with different H2SO4 saturation vapor pressures, J. Chem. Phys. 93(1), 696–701 (1990),
http://dx.doi.org/10.1063/1.459519
[13] P. Korhonen, M. Kulmala, A. Laaksonen, Y. Viisanen, R. McGraw, and J.H. Seinfeld, Ternary nucleation of H2SO4, NH3, and H2O in the atmosphere, J. Geophys. Res. 104(D21), 26349–26353 (1999),
http://dx.doi.org/10.1029/1999JD900784
[14] N. Ma, C.S. Zhao, A. Nowak, et al., Aerosol optical properties in the North China Plain during HaChi campaign: an in-situ optical closure study, Atmos. Chem. Phys. 11, 5959–5973 (2011),
http://dx.doi.org/10.5194/acp-11-5959-2011
[15] I.K. Ortega, T. Suni, M. Boy, et al., New insights into nocturnal nucleation, Atmos. Chem. Phys. 12, 4297–4312 (2012),
http://dx.doi.org/10.5194/acp-12-4297-2012
[16] S.S. Brown, W.P. Dube, J. Peischl, et al., Budgets for nocturnal VOC oxidation by nitrate radicals aloft during the 2006 Texas Air Quality Study, J. Geophys. Res. 116, D24305 (2011),
http://dx.doi.org/10.1029/2011JD016544
[17] Z.Z. Deng, C.S. Zhao, N. Ma, et al., Size-resolved and bulk activation properties of aerosols in the North China Plain, Atmos. Chem. Phys. 11, 3835–3846 (2011),
http://dx.doi.org/10.5194/acp-11-3835-2011
[18] L. Wang, J. Yang, P. Zhang, et al., A review of air pollution and control in Hebei Province, China, Open J. Air Pollut. 2(03), 47 (2013),
http://dx.doi.org/10.4236/ojap.2013.23007
[19] T.M. Tuch, A. Haudek, T. Muller, A. Nowak, H. Wex, and A. Wiedensohler, Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites, Atmos. Meas. Tech. 2, 417–422 (2009),
http://dx.doi.org/10.5194/amt-2-417-2009
[20] A. Wiedensohler, W. Birmili, A. Nowak, et al., Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech. 5, 657–685 (2012),
http://dx.doi.org/10.5194/amt-5-657-2012
[21] S. Mirme and A. Mirme, The mathematical principles and design of the NAIS – a spectrometer for the measurement of cluster ion and nanometer aerosol size distributions, Atmos. Meas. Tech. 6(4), 1061–1071 (2013),
http://dx.doi.org/10.5194/amt-6-1061-2013
[22] M. Kulmala, I. Riipinen, M. Sipilä, et al., Toward direct measurement of atmospheric nucleation, Science 318(5847), 89–92 (2007),
http://dx.doi.org/10.1126/science.1144124
[23] A. Massling, S. Leinert, A. Wiedensohler, and D. Covert, Hygroscopic growth of sub-micrometer and one-micrometer aerosol particles measured during ACE-Asia, Atmos. Chem. Phys. 7(12), 3249–3259 (2007),
http://dx.doi.org/10.5194/acp-7-3249-2007
[24] I.N. Tang and H.R. Munkelwitz, Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance, J. Geophys. Res. 99(D9), 18801–18808 (1994),
http://dx.doi.org/10.1029/94JD01345
[25] S. Philippin, A. Wiedensohler, and F. Stratmann, Measurements of non-volatile fractions of pollution aerosols with an eight-tube volatility tandem differential mobility analyzer (VTDMA-8), J. Aerosol Sci. 35(2), 185–203 (2004),
http://dx.doi.org/10.1016/j.jaerosci.2003.07.004
[26] H. Burtscher, U. Baltensperger, N. Bukowiecki, et al., Separation of volatile and non-volatile aerosol fractions by thermodesorption: instrumental development and applications, J. Aerosol Sci. 32(4), 427–442 (2001),
http://dx.doi.org/10.1016/S0021-8502(00)00089-6
[27] M. Dal Maso, M. Kulmala, I. Riipinen, R. Wagner, T. Hussein, P.P. Aalto, and K.E. Lehtinen, Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiala, Finland, Boreal Environ. Res. 10(5), 323 (2005),
http://www.borenv.net/BER/pdfs/ber10/ber10-323.pdf
[28] Y.F. Cheng, M. Berghof, R.M. Garland, et al., Influence of soot mixing state on aerosol light absorption and single scattering albedo during air mass aging at a polluted regional site in northeastern China, J. Geophys. Res. 114, D00G10 (2009),
http://dx.doi.org/10.1029/2008JD010883
[29] W. Birmili, F. Stratmann, A. Wiedensohler, D. Covert, L.M. Russell, and O. Berg, Determination of differential mobility analyzer transfer functions using identical instruments in series, Aerosol Sci. Technol. 27(2), 215–223 (1997),
http://dx.doi.org/10.1080/02786829708965468
[30] M. Gysel, G.B. McFiggans, and H. Coe, Inversion of tandem differential mobility analyser (TDMA) measurements, J. Aerosol Sci. 40(2), 134–151 (2009),
http://dx.doi.org/10.1016/j.jaerosci.2008.07.013
[31] H.E. Manninen, T. Nieminen, I. Riipinen, et al., Charged and total particle formation and growth rates during EUCAARI 2007 campaign in Hyytiälä, Atmos. Chem. Phys. 9(12), 4077–4089 (2009),
http://dx.doi.org/10.5194/acp-9-4077-2009
[32] J. Heintzenberg, B. Wehner, and W. Birmili, 'How to find bananas in the atmospheric aerosol': new approach for analyzing atmospheric nucleation and growth events, Tellus B 59(2), 273–282 (2007),
http://dx.doi.org/10.1111/j.1600-0889.2007.00249.x
[33] L. Ran, W-L. Lin, P-C. Wang, and Z-Z. Deng, Surface trace gases at a rural site between the megacities of Beijing and Tianjin, Atmos. Ocean. Sci. Lett. 7(3), 230 (2014),
http://dx.doi.org/10.3878/j.issn.1674-2834.13.0115
[34] S.S. Brown, T.B. Ryerson, A.G. Wollny, et al., Variability in nocturnal nitrogen oxide processing and its role in regional air quality, Science 311(5757), 67–70 (2006),
http://dx.doi.org/10.1126/science.1120120
[35] N.M. Donahue, J.H. Kroll, J.G. Anderson, and K.L. Demerjian, Direct observation of OH production from the ozonolysis of olefins, Geophys. Res. Lett. 25(1), 59–62 (1998),
http://dx.doi.org/10.1029/97GL53560
[36] S.S. Brown, H. Stark, T.B. Ryerson, et al., Nitrogen oxides in the nocturnal boundary layer: Simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3, J. Geophys. Res. 108(D9), 4299 (2003),
http://dx.doi.org/10.1029/2002JD002917
[37] A. Geyer, B. Alicke, S. Konrad, T. Schmitz, J. Stutz, and U. Platt, Chemistry and oxidation capacity of the nitrate radical in the continental boundary layer near Berlin, J. Geophys. Res. 106(D8), 8013–8025 (2001),
http://dx.doi.org/10.1029/2000JD900681
[38] H. Sakurai, M.A. Fink, P.H. McMurry, L. Mauldin, K.F. Moore, J.N. Smith, and F.L. Eisele, Hygroscopicity and volatility of 4–10 nm particles during summertime atmospheric nucleation events in urban Atlanta, J. Geophys. Res. 110, D22504 (2005),
http://dx.doi.org/10.1029/2005JD005918
[39] R. Zhang, A. Khalizov, L. Wang, M. Hu, and W. Xu, Nucleation and growth of nanoparticles in the atmosphere, Chem. Rev. 112(3), 1957–2011 (2011),
http://dx.doi.org/10.1021/cr2001756
[40] U. Kuhn, J. Sintermann, C. Spirig, M. Jocher, C. Ammann, and A. Neftel, Basic biogenic aerosol precursors: Agricultural source attribution of volatile amines revised, Geophys. Res. Lett. 38(16), L16811 (2011),
http://dx.doi.org/10.1029/2011GL047958
[41] T. Berndt, F. Stratmann, M. Sipilä, et al., Laboratory study on new particle formation from the reaction OH+SO2: influence of experimental conditions, H2O vapour, NH3 and the amine tert-butylamine on the overall process, Atmos. Chem. Phys. 10(15), 7101–7116 (2010),
http://dx.doi.org/10.5194/acp-10-7101-2010
[42] M.E. Erupe, A.A. Viggiano, and S.H. Lee, The effect of trimethylamine on atmospheric nucleation involving H2SO4, Atmos. Chem. Phys. 11(10), 4767–4775, (2011),
http://dx.doi.org/10.5194/acp-11-4767-2011
[43] H. Yu, R. McGraw, and S.H. Lee, Effects of amines on formation of sub‐3 nm particles and their subsequent growth, Geophys. Res. Lett. 39(2), L02807 (2012),
http://dx.doi.org/10.1029/2011GL050099