Received 3 February 2015; revised 6 March 2015; accepted 20
March 2015
KOMPOZITŲ SU SVOGŪNINĖS ANGLIES
IR DAUGIASIENIŲ ANGLIES NANOVAMZDELIŲ UŽPILDU ELEKTRINĖS IR
DIELEKTRINĖS SAVYBĖS
Straipsnyje aptariamos kompozitų
su anglies nanovamzdelių, svogūninės anglies, mišriu
nanovamzdelių ir svogūninės anglies užpildu plačiame dažnių
diapazone elektrinės bei dielektrinės savybės.
Kompozituose su anglies nanovamzdeliais yra stebimos didesnės
dielektrinės skvarbos ir laidumo vertės nei kompozituose su
svogūninės anglies užpildu. Kompozitų su svogūninės anglies
užpildu elektrinės savybės gali būti pagerintos įterpiant
nedidelį kiekį anglies nanovamzdelių. Mišriuose kompozituose dėl
sumažėjusio atstumo tarp anglies intarpų mažėja potencinis
barjeras elektronams tuneliuoti, todėl padidėja kompozitų
dielektrinė skvarba ir elektrinis laidumas.
References
/
Nuorodos
[1] F. Qin and C.
Brosseau, A review and analysis of microwave absorption in
polymer composites filled with carbonaceous particles, J. Appl.
Phys.
111, 061301 (2012),
http://dx.doi.org/10.1063/1.3688435
[2] G. Inzelt,
Conducting Polymers: A New Era in
Electrochemistry (Springer, Berlin, 2008),
http://www.springer.com/us/book/9783642276200
[3] K.J. Vinoy and R.M. Jha,
Radar Absorbing Materials from
Theory to Design and Characterization (Kluwer Academic
Publishers, Boston, 1996),
http://dx.doi.org/10.1007/978-1-4613-0473-9
[4] M.J. Jiang, Z.M. Dang, and H.P. Xu, Giant dielectric
constant and resistance-pressure sensitivity in carbon
nanotubes/rubber nanocomposites with low percolation threshold,
Appl. Phys. Lett.
90, 042912 (2007),
http://dx.doi.org/10.1063/1.2432232
[5] W. Bauhofer and Z. Kovacs, A review and analysis of
electrical percolation in carbon nanotube polymer composites,
Compos. Sci. Technol.
69, 1486 (2009),
http://dx.doi.org/10.1016/j.compscitech.2008.06.018
[6] L.J. Adriaanse, J.A. Reedijk, P.A.A. Teunissen, H.B. Brom,
M.A.J. Michels, and J.C.M. Brokken-Zijp, High-dilution
carbon-black/polymer composites: Hierarchical percolating
network derived from Hz to THz ac conductivity, Phys. Rev. Lett.
78, 1755 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.1755
[7] V.L. Kuznetsov, Yu.V. Butenko, A.L. Chuvilin, A.I.
Romanenko, and A.V. Okotrub, Electrical resistivity of
graphitized ultra-disperse diamond and onion-like carbon, Chem.
Phys. Lett.
336, 5–6 (2001),
http://dx.doi.org/10.1016/S0009-2614(01)00135-X
[8] J. Macutkevic, I. Kranauskaite, J. Banys, S. Moseenkov, V.
Kuznetsov, and O. Shenderova, Metalinsulator transition and size
dependent electrical percolation in onion-like
carbon/polydimethylsiloxane composites, J. Appl. Phys.
115,
213702 (2014),
http://dx.doi.org/10.1063/1.4880995
[9] J. Macutkevic, D. Seliuta, G. Valusis, J. Banys, V.
Kuznetsov, S. Moseenkov, and O. Shenderova, High dielectric
permittivity of percolative composites based on onion-like
carbon, Appl. Phys. Lett.
95, 112901 (2009),
http://dx.doi.org/10.1063/1.3224187
[10] S. Kirkpatrick, Percolation phenomena in higher dimensions:
Approach to the mean-field limit, Phys. Rev. Lett.
36,
69 (1976),
http://dx.doi.org/10.1103/PhysRevLett.36.69
[11] J. Macutkevic, D. Seliuta, G. Valusis, J. Banys, S. Hens,
V. Borjanovic, V. Kuznetsov, and O. Shenderova, Effect of
thermal treatment conditions on the properties of onion-like
carbon based polymer composite, Compos. Sci. Technol.
70,
2298 (2010),
http://dx.doi.org/10.1016/j.compscitech.2010.09.008
[12] J. Chen, X. Ch. Du, W.B. Zhang, J.H. Yang, N. Zhang, T.
Huang and Y. Wang, Synergistic effect of carbon nanotubes and
carbon black on electrical conductivity of PA6/ABS blend,
Compos. Sci. Technol.
81, 1–8 (2013),
http://dx.doi.org/10.1016/j.compscitech.2013.03.014
[13] E. Bilotti, H. Zhang, H. Deng, R. Zhang, Q. Fu, and T.
Peijs, Controlling the dynamic percolation of carbon nanotube
based conductive polymer composites by addition of secondary
nanofillers: The effect on electrical conductivity and tuneable
sensing behaviour, Compos. Sci. Technol.
74, 84 (2013),
http://dx.doi.org/10.1016/j.compscitech.2012.10.008
[14] J. Sumfleth, X.C. Adroher, and K. Shulte, Synergistic
effects in network formation and electrical properties of hybrid
epoxy nanocomposites containing multi-wall carbon nanotubes and
carbon black, J. Mater. Sci.
44, 3241 (2009),
http://dx.doi.org/10.1007/s10853-009-3434-7
[15] J. Grigas,
Microwave Dielectric Spectroscopy of
Ferroelectrics and Related Materials (Gordon and Breach
Science Publishers, Amsterdam, 1996),
http://www.amazon.co.uk/Microwave-Dielectric-Spectroscopy-Ferroelectrics-Ferroelectricity/dp/2884491902/
[16] H.M. Kim, M.S. Choi, J. Joo, J.J. Cho, and H.S. Yoon,
Complexity in charge transport for multiwalled carbon nanotube
and poly(methyl methacrylate) composites, Phys. Rev. B
74,
054202 (2006),
http://dx.doi.org/10.1103/PhysRevB.74.054202
[17] J. Macutkevic, R. Adomavicius, A. Krotkus, J. Banys, V.
Kuznetsov, S. Moseenkov, A. Romanenko, and O. Shenderova,
Localization and electrical transport in onion-like carbon based
composites, J. Appl. Phys.
111, 103701 (2012),
http://dx.doi.org/10.1063/1.4714555
[18] D. Almond, G.K. Duncan, and A.R. West, The determination of
hopping rates and carrier concentrations in ionic conductors by
a new analysis of ac conductivity, Solid State Ionics
8,
159 (1983),
http://dx.doi.org/10.1016/0167-2738(83)90079-6
[19] P. Sheng, E.K. Sichel, and J.I. Gittleman,
Fluctuation-included tunneling conduction in
carbonpolyvinylchloride composites, Phys. Rev. Lett.
40,
1197 (1978),
http://dx.doi.org/10.1103/PhysRevLett.40.1197