[PDF]    http://dx.doi.org/10.3952/physics.v55i2.3103

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 126131 (2015)


ELECTRIC/DIELECTRIC PROPERTIES OF COMPOSITES FILLED WITH ONION-LIKE CARBON AND MULTIWALLED CARBON NANOTUBES
Ieva Kranauskaitėa, Jūras Banysa, Ewa Talikb, Vladimir Kuznetsovc, Nicolas Nunnd, and Olga Shenderovad
aVilnius University, Saulėtekio 9, LT-00122 Vilnius, Lithuania
E-mail: ieva.kranauskaite@ff.vu.lt
bInstitute of Physics, University of Silesia, ul. Uniwersytecka 4, PL-40-007 Katowice, Poland
cBoreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, Novosibirsk, 630090, Russia
dInternational Technology Center, Raleigh, NC 27715, USA

Received 3 February 2015; revised 6 March 2015; accepted 20 March 2015

The dielectric/electric properties of polyurethane composites filled with carbon nanotubes (CNTs), onion-like carbon (OLC) and mixed onion-like carbon/carbon nanotubes are compared across a wide frequency range from hertz to terahertz. The highest value of dielectric permittivity and electrical conductivity is observed in composites with carbon nanotubes. However, the dielectric/electric properties of composites filled with onion-like carbon are also very attractive and can be improved by addition of small amounts of carbon nanotubes due to the strong synergy effect. In composites with inclusions of mixed onion-like carbon/carbon nanotubes, the dielectric permittivity and electrical conductivity increase due to the decreasing of both the potential barrier for carrier tunneling and the average distance between nanocarbon clusters.
Keywords: carbon nanotubes, onion-like carbon, synergy, composites
PACS: 72.80.Tm, 77.22.Ch, 81.05.ub, 81.07.De

KOMPOZITŲ SU SVOGŪNINĖS ANGLIES IR DAUGIASIENIŲ ANGLIES NANOVAMZDELIŲ UŽPILDU ELEKTRINĖS IR DIELEKTRINĖS SAVYBĖS

Ieva Kranauskaitėa, Jūras Banysa, Ewa Talikb, Vladimir Kuznetsovc, Nicolas Nunnd, Olga Shenderovad
aVilniaus universitetas, Vilnius, Lietuva
bSilezijos universiteto Fizikos institutas, Katovicai, Lenkija
cRusijos MA Sibiro skyriaus Boreskovo katalizės institutas, Novosibirskas, Rusija
dTarptautinis technologijos centras, Rolis, Šiaurės Karolina, JAV

Straipsnyje aptariamos kompozitų su anglies nanovamzdelių, svogūninės anglies, mišriu nanovamzdelių ir svogūninės anglies užpildu plačiame dažnių diapazone elektrinės bei dielektrinės savybės.
Kompozituose su anglies nanovamzdeliais yra stebimos didesnės dielektrinės skvarbos ir laidumo vertės nei kompozituose su svogūninės anglies užpildu. Kompozitų su svogūninės anglies užpildu elektrinės savybės gali būti pagerintos įterpiant nedidelį kiekį anglies nanovamzdelių. Mišriuose kompozituose dėl sumažėjusio atstumo tarp anglies intarpų mažėja potencinis barjeras elektronams tuneliuoti, todėl padidėja kompozitų dielektrinė skvarba ir elektrinis laidumas.

References / Nuorodos

[1] F. Qin and C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles, J. Appl. Phys. 111, 061301 (2012),
http://dx.doi.org/10.1063/1.3688435
[2] G. Inzelt, Conducting Polymers: A New Era in Electrochemistry (Springer, Berlin, 2008),
http://www.springer.com/us/book/9783642276200
[3] K.J. Vinoy and R.M. Jha, Radar Absorbing Materials from Theory to Design and Characterization (Kluwer Academic Publishers, Boston, 1996),
http://dx.doi.org/10.1007/978-1-4613-0473-9
[4] M.J. Jiang, Z.M. Dang, and H.P. Xu, Giant dielectric constant and resistance-pressure sensitivity in carbon nanotubes/rubber nanocomposites with low percolation threshold, Appl. Phys. Lett. 90, 042912 (2007),
http://dx.doi.org/10.1063/1.2432232
[5] W. Bauhofer and Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Compos. Sci. Technol. 69, 1486 (2009),
http://dx.doi.org/10.1016/j.compscitech.2008.06.018
[6] L.J. Adriaanse, J.A. Reedijk, P.A.A. Teunissen, H.B. Brom, M.A.J. Michels, and J.C.M. Brokken-Zijp, High-dilution carbon-black/polymer composites: Hierarchical percolating network derived from Hz to THz ac conductivity, Phys. Rev. Lett. 78, 1755 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.1755
[7] V.L. Kuznetsov, Yu.V. Butenko, A.L. Chuvilin, A.I. Romanenko, and A.V. Okotrub, Electrical resistivity of graphitized ultra-disperse diamond and onion-like carbon, Chem. Phys. Lett. 336, 5–6 (2001),
http://dx.doi.org/10.1016/S0009-2614(01)00135-X
[8] J. Macutkevic, I. Kranauskaite, J. Banys, S. Moseenkov, V. Kuznetsov, and O. Shenderova, Metalinsulator transition and size dependent electrical percolation in onion-like carbon/polydimethylsiloxane composites, J. Appl. Phys. 115, 213702 (2014),
http://dx.doi.org/10.1063/1.4880995
[9] J. Macutkevic, D. Seliuta, G. Valusis, J. Banys, V. Kuznetsov, S. Moseenkov, and O. Shenderova, High dielectric permittivity of percolative composites based on onion-like carbon, Appl. Phys. Lett. 95, 112901 (2009),
http://dx.doi.org/10.1063/1.3224187
[10] S. Kirkpatrick, Percolation phenomena in higher dimensions: Approach to the mean-field limit, Phys. Rev. Lett. 36, 69 (1976),
http://dx.doi.org/10.1103/PhysRevLett.36.69
[11] J. Macutkevic, D. Seliuta, G. Valusis, J. Banys, S. Hens, V. Borjanovic, V. Kuznetsov, and O. Shenderova, Effect of thermal treatment conditions on the properties of onion-like carbon based polymer composite, Compos. Sci. Technol. 70, 2298 (2010),
http://dx.doi.org/10.1016/j.compscitech.2010.09.008
[12] J. Chen, X. Ch. Du, W.B. Zhang, J.H. Yang, N. Zhang, T. Huang and Y. Wang, Synergistic effect of carbon nanotubes and carbon black on electrical conductivity of PA6/ABS blend, Compos. Sci. Technol. 81, 1–8 (2013),
http://dx.doi.org/10.1016/j.compscitech.2013.03.014
[13] E. Bilotti, H. Zhang, H. Deng, R. Zhang, Q. Fu, and T. Peijs, Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: The effect on electrical conductivity and tuneable sensing behaviour, Compos. Sci. Technol. 74, 84 (2013),
http://dx.doi.org/10.1016/j.compscitech.2012.10.008
[14] J. Sumfleth, X.C. Adroher, and K. Shulte, Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black, J. Mater. Sci. 44, 3241 (2009),
http://dx.doi.org/10.1007/s10853-009-3434-7
[15] J. Grigas, Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials (Gordon and Breach Science Publishers, Amsterdam, 1996),
http://www.amazon.co.uk/Microwave-Dielectric-Spectroscopy-Ferroelectrics-Ferroelectricity/dp/2884491902/
[16] H.M. Kim, M.S. Choi, J. Joo, J.J. Cho, and H.S. Yoon, Complexity in charge transport for multiwalled carbon nanotube and poly(methyl methacrylate) composites, Phys. Rev. B 74, 054202 (2006),
http://dx.doi.org/10.1103/PhysRevB.74.054202
[17] J. Macutkevic, R. Adomavicius, A. Krotkus, J. Banys, V. Kuznetsov, S. Moseenkov, A. Romanenko, and O. Shenderova, Localization and electrical transport in onion-like carbon based composites, J. Appl. Phys. 111, 103701 (2012),
http://dx.doi.org/10.1063/1.4714555
[18] D. Almond, G.K. Duncan, and A.R. West, The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity, Solid State Ionics 8, 159 (1983),
http://dx.doi.org/10.1016/0167-2738(83)90079-6
[19] P. Sheng, E.K. Sichel, and J.I. Gittleman, Fluctuation-included tunneling conduction in carbonpolyvinylchloride composites, Phys. Rev. Lett. 40, 1197 (1978),
http://dx.doi.org/10.1103/PhysRevLett.40.1197