[PDF]    http://dx.doi.org/10.3952/physics.v55i2.3099

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 9299 (2015)


CONSTITUTIVE RELATIONS IN CLASSICAL OPTICS IN TERMS OF GEOMETRIC ALGEBRA
Adolfas Dargys
Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: adolfas.dargys@ftmc.lt

Received 10 February 2015; revised 30 March 2015; accepted 15 June 2015

To have a closed system, the Maxwell electromagnetic equations should be supplemented by constitutive relations which describe medium properties and connect primary fields (E, B) with secondary ones (D, H). J.W. Gibbs and O. Heaviside introduced the basis vectors {i, j, k} to represent the fields and constitutive relations in the three-dimensional vectorial space. In this paper the constitutive relations are presented in a form of Cl3,0 algebra which describes the vector space by three basis vectors {σ1, σ2, σ3} that satisfy Pauli commutation relations. It is shown that the classification of electromagnetic wave propagation phenomena with the help of constitutive relations in this case comes from the structure of Cl3,0 itself. Concrete expressions for classical constitutive relations are presented including electromagnetic wave propagation in a moving dielectric.
Keywords: electrodynamics, constitutive relations, light propagation in anisotropic media, geometric algebra, Clifford algebra
PACS: 03.50.D, 42.25.B, 77.22.C, 78.20.E

SANDAROS RYŠIAI KLASIKINĖJE OPTIKOJE GEOMETRINĖS ALGEBROS POŽIŪRIU

Adolfas Dargys
Fizinių ir technologijos mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lietuva

Kad Maxwello lygčių sistema būtų uždara, ją reikia papildyti sandaros ryšiais, nusakančiais terpės, kurioje sklinda elektromagnetinė banga, savybes ir susiejančiais pirminius elektromagnetinius laukus su antriniais. Straipsnyje pateikti sandaros ryšiai užrašyti Cl3,0 algebros, vadinamosios Cliffordo algebra, kalba. Nuo standartinio vektorinio skaičiavimo, plačiai taikomo elektrodinamikoje, ši algebra skiriasi tuo, kad Euklido erdvę sudarantys trys ortai joje tenkina tuos pačius komutacinius sąryšius kaip ir Paulio matricos. Kadangi Cl3,0 algebra yra izomorfiška reliatyvistinės Cl1,3 algebros lyginiam poalgebriui, manoma, kad Cl3,0 algebros matematinis aparatas teisingiau aprašo trimatę Euklido erdvę nei daugiau kaip prieš 100 metų J.W. Gibbso ir O. Heaviside pasiūlyti ortai {i, j, k} ir su jais susietas vektorinis skaičiavimas. Be to, Cl1,3 ir Cl3,0 algebros aiškiau suskirsto elektrodinamiką į reliatyvistinę ir klasikinę. Straipsnyje nagrinėjami sandaros ryšiai klasikinės elektrodinamikos požiūriu, kai aplinkos atsakas yra tiesinis sužadinimo atžvilgiu ir be vėlinimo. Parodyta, kad tokiu atveju elektromagnetinių bangų sklidimo savybių klasifikacija išeina iš pačios Cl3,0 algebros vidinės sandaros ir todėl sandaros ryšiams suformuluoti nėra reikalingi jokie kiti papildomi apribojimai. Pateiktos konkrečios sandaros sąryšių matematinės išraiškos Cl3,0 algebros kalba, taip pat jų pagalba išspręstas elektromagnetinės bangos sklidimo judančiame dielektrike uždavinys.

References / Nuorodos

[1] M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1968),
http://www.amazon.co.uk/372/dp/B0006BNJ2E/
[2] E.J. Post, Formal Structure of Electromagnetics (North Holland Publishing Company, Amsterdam, 1962),
http://www.amazon.co.uk/Formal-Structure-Electromagnetics-Physics-E-J/dp/0486654273/
[3] F.W. Hehl and Y.N. Obukhov, Foundations of Classical Electrodynamics: Charge, Flux and Metric (Birkhäuser, Boston, 2003),
http://dx.doi.org/10.1007/978-1-4612-0051-2
[4] T.G. Mackay and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide (World Scientific Publishing, Singapore, 2010),
http:/dx.doi.org/10.1142/7515
[5] A. Karlsson and G. Kristensson, Constitutive relations, dissipation, and reciprocity for the Maxwell equations in the time domain, JEWA 6, 537–551 (1992),
http://dx.doi.org/10.1163/156939392X01309
[6] P. Hillion, Constitutive relations and Clifford algebra in electromagnetism, Adv. Appl. Clifford Alg. 5(2), 141–158 (1995)
[7] B.D.H. Tellegen, The gyrator, a new electric network element, Philips Res. Rep. 3, 81–101 (1948)
[8] V.V. Varlamov, Universal coverings of orthogonal groups, Adv. Appl. Clifford Alg. 14(1), 81–168 (2004),
http://dx.doi.org/10.1007/s00006-004-0006-4
[9] B. Jancewicz, Multivectors and Clifford Algebra in Electrodynamics (World Scientific, Singapore, 1988),
http://dx.doi.org/10.1142/0419
[10] W. Baylis, Electrodynamics: A Modern Geometric Approach (Birkhäuser, Boston, 1999),
http://www.springer.com/us/book/9780817640255
[11] C. Doran and A. Lasenby, Geometric Algebra for Physicists (Cambridge University Press, Cambridge, 2003),
http://dx.doi.org/10.1017/CBO9780511807497
[12] J.W. Arthur, Understanding Geometric Algebra for Electromagnetic Theory (John Wiley & Sons, Hoboken, New Jersey, 2011),
http://dx.doi.org/10.1002/9781118078549
[13] S.A. Matos, M.A. Ribeiro, and C.R. Paiva, Anisotropy without tensors: A novel approach using geometric algebra, Opt. Express 15(23), 15175–15182 (2007),
http://dx.doi.org/10.1364/OE.15.015175
[14] P. Puska, Covariant isotropic constitutive relations in Clifford’s geometric algebra, PIER 32, 413–428 (2001),
http://dx.doi.org/10.2528/PIER00080116
[15] T. Ivezić, The constitutive relations and the magnetoelectric effect for a moving medium, arXiv:1204.0114v1 [physics:gen-ph], 1–18 (2012),
http://arxiv.org/abs/1204.0114v1
[16] D. Hestenes, New Foundations for Classical Mechanics, 2nd ed. (Kluwer Academic Publishers, 2002),
http://dx.doi.org/10.1007/0-306-47122-1
[17] F.W. Hehl and Y.N. Obukhov, A gentle introduction to the foundations of classical electrodynamics: The meaning of excitations (D, H) and the field strengths (E, B), arXiv: physics/0005084v2 [physics.class-ph], 1–22 (2000),
http://arxiv.org/abs/physics/0005084v2
[18] J.W. Gibbs, Vector Analysis (Yale University, 1901)
[19] A. Macdonald, Vector and Geometric Calculus (Luther College, Decorah, USA, 2012),
http://www.amazon.co.uk/Vector-Geometric-Calculus-Alan-Macdonald/dp/1480132454/
[20] M. Fiebig, Revival of the magnetoelectric effect, J. Phys. D 38, R123–R152 (2005),
http://dx.doi.org/10.1088/0022-3727/38/8/R01
[21] L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media, Ch. 9 (Pergamon, Oxford, 1984),
http://www.amazon.co.uk/372/dp/0750626348/
[22] A. Dargys, Constitutive relations in optics in terms of geometric algebra, Opt. Commun. 354, 259-265 (2015)'
http://dx.doi.org/10.1016/j.optcom.2015.06.004
[23] P. Lounesto, Clifford Algebras and Spinors (Cambridge University Press, Cambridge, 1997),
http://www.cambridge.org/academic/subjects/mathematics/algebra/clifford-algebras-and-spinors-2nd-edition