Ieva Gražulevičiūtė, Milda Skeivytė, Enrika Keblytė, Justinas
Galinis, Gintaras Tamošauskas, and Audrius Dubietis
Received 10 March 2015; revised 10 April 2015; accepted 15 June
2015
SUPERKONTINUUMO GENERAVIMAS YAG
IR SAFYRO KRISTALUOSE ŽADINANT PIKOSEKUNDINIAIS LAZERIO
IMPULSAIS
Eksperimentiškai ištirtas
superkontinuumo generavimas YAG ir safyro kristaluose žadinant
1,1 ps trukmės, 1055 nm bangos ilgio lazerio impulsais. Švelnaus
fokusavimo sąlygomis pradinio impulso galių intervale nuo 6 iki
10 Pcr sužadinta stabili šviesos gija, kuri
lėmė gerai atsikartojančio superkontinuumo generavimą ir spektro
plėtrą atitinkamai nuo 460 nm iki 1,4 μm YAG ir nuo 410
nm iki 1,3 μm safyro kristaluose. Nustatyta, kad
ilgalaikė medžiagos savybių modifikacija dėl daugelio
pasikartojančių impulsų poveikio yra lemiamas veiksnys,
iškraipantis šviesos gijos intensyvumo skirstinį ir labai
modifikuojantis superkontinuumo spektrą.
References
/
Nuorodos
[1] A. Brodeur and S.L.
Chin, Ultrafast white-light continuum generation and
self-focusing in transparent condensed media, J. Opt. Soc. Am. B
16, 637–650 (1999),
http://dx.doi.org/10.1364/JOSAB.16.000637
[2] C. Nagura, A. Suda, H. Kawano, M. Obara, and K. Midorikawa,
Generation and characterization of ultrafast white-light
continuum in condensed media, Appl. Opt.
41, 3735–3742
(2002),
http://dx.doi.org/10.1364/AO.41.003735
[3] V.P. Kandidov, O.G. Kosareva, I.S. Golubtsov, W. Liu, A.
Becker, N. Akozbek, C.M. Bowden, and S.L. Chin,
Self-transformation of a powerful femtosecond laser pulse into a
white-light laser pulse in bulk optical media (or supercontinuum
generation), Appl. Phys. B
77, 149–165 (2003),
http://dx.doi.org/10.1007/s00340-003-1214-7
[4] A.K. Dharmadhikari, F.A. Rajgara, and D. Mathur, Systematic
study of highly efficient white-light generation in transparent
materials using intense femtosecond pulses, Appl. Phys. B
80,
61–66 (2005),
http://dx.doi.org/10.1007/s00340-004-1682-4
[5] J.B. Ashcom, R.R. Gattass, C.B. Schaffer, and E. Mazur,
Numerical aperture dependence of damage and supercontinuum
generation from femtosecond laser pulses in bulk fused silica,
J. Opt. Soc. Am. B
23, 2317–2322 (2006),
http://dx.doi.org/10.1364/JOSAB.23.002317
[6] M. Bradler, P. Baum, and E. Riedle, Femtosecond continuum
generation in bulk laser host materials with sub-μJ pump pulses,
Appl. Phys. B
97, 561–574 (2009),
http://dx.doi.org/10.1007/s00340-009-3699-1
[7] D. Majus, V. Jukna, E. Pileckis, G. Valiulis, and A.
Dubietis, Rogue-wave-like statistics in ultrafast white-light
continuum generation in sapphire, Opt. Express
19,
16317–16323 (2011),
http://dx.doi.org/10.1364/OE.19.016317
[8] D. Majus and A. Dubietis, Statistical properties of
ultrafast supercontinuum generated by femtosecond Gaussian and
Bessel beams: a comparative study, J. Opt. Soc. Am. B
30,
994–999 (2013),
http://dx.doi.org/10.1364/JOSAB.30.000994
[9] V. Jukna, J. Galinis, G. Tamošauskas, D. Majus, and A.
Dubietis, Infrared extension of femtosecond supercontinuum
generated by filamentation in solid-state media, Appl. Phys. B
116,
477–483 (2014),
http://dx.doi.org/10.1007/s00340-013-5723-8
[10] A. Saliminia, S.L. Chin, and R. Vallée, Ultrabroad and
coherent white light generation in silica glass by focused
femtosecond pulses at 1.5
μm, Opt. Express
13,
5731–5738 (2005),
http://dx.doi.org/10.1364/OPEX.13.005731
[11] E.O. Smetanina, V.O. Kompanets, S.V. Chekalin, A.E.
Dormidonov, and V.P. Kandidov, Anti-Stokes wing of femtosecond
laser filament supercontinuum in fused silica, Opt. Lett.
38,
16–18 (2013),
http://dx.doi.org/10.1364/OL.38.000016
[12] M. Durand, K. Lim, V. Jukna, E. McKee, M. Baudelet, A.
Houard, M. Richardson, A. Mysyrowicz, and A. Couairon,
Blueshifted continuum peaks from filamentation in the anomalous
dispersion regime, Phys. Rev. A
87, 043820 (2013),
http://dx.doi.org/10.1103/PhysRevA.87.043820
[13] J.A. Dharmadhikari, R.A. Deshpande, A. Nath, K. Dota, D.
Mathur, and A.K. Dharmadhikari, Effect of group velocity
dispersion on supercontinuum generation and filamentation in
transparent solids, Appl. Phys. B
117, 471–479 (2014),
http://dx.doi.org/10.1007/s00340-014-5857-3
[14] F. Silva, D.R. Austin, A. Thai, M. Baudisch, M. Hemmer, D.
Faccio, A. Couairon, and J. Biegert, Multi-octave supercontinuum
generation from mid-infrared filamentation in a bulk crystal,
Nature Commun.
3, 807 (2012),
http://dx.doi.org/10.1038/ncomms1816
[15] J. Darginavičius, D. Majus, V. Jukna, N. Garejev, G.
Valiulis, A. Couairon, and A. Dubietis, Ultrabroadband
supercontinuum and third-harmonic generation in bulk solids with
two optical-cycle carrier-envelope phase-stable pulses at 2
μm,
Opt. Express
21, 25210–25220 (2013),
http://dx.doi.org/10.1364/OE.21.025210
[16] R.R. Alfano,
The Supercontinuum Laser Source
(Springer, 2006),
http://www.springer.com/us/book/9780387245041
[17] M. Bradler and E. Riedle, in:
Advanced Solid-State
Photonics (ASSP) 2011, Paper AMD4,
https://www.osapublishing.org/abstract.cfm?uri=ASSP-2011-AMD4
[18] M. Bradler and E. Riedle, in:
Lasers and Electro-Optics
Europe (CLEO EUROPE/EQEC), 2011 Conference on and 12th
European Quantum Electronics Conference, Paper
CF3-2,
http://dx.doi.org/10.1109/CLEOE.2011.5942879
[19] M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler,
P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S.
Hädrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B.
Faatz, A. Tünnermann, J. Rossbach, M. Drescher, and F. Tavella,
Yb:YAG Innoslab amplifier: efficient high repetition rate
subpicosecond pumping system for optical parametric chirped
pulse amplification, Opt. Lett.
36, 2456–2458 (2011),
http://dx.doi.org/10.1364/OL.36.002456
[20] R. Riedel, A. Stephanides, M.J. Prandolini, B. Gronloh, B.
Jungbluth, T. Mans, and F. Tavella, Power scaling of
supercontinuum seeded megahertz-repetition rate optical
parametric chirped pulse amplifiers, Opt. Lett.
39,
1422–1424 (2014),
http://dx.doi.org/10.1364/OL.39.001422
[21] S. Xu, J. Qiu, T. Jia, C. Li, H. Sun, and Z. Xu,
Femtosecond laser ablation of crystals SiO
2 and YAG,
Opt. Commun.
274, 163–166 (2007),
http://dx.doi.org/10.1016/j.optcom.2007.01.079
[22] O. Uteza, B. Bussière, J.-P. Chambaret, P. Delaporte, T.
Itina, and M. Sentis, Laser-induced damage threshold of sapphire
in nanosecond, picosecond and femtosecond regimes, Appl. Surf.
Sci.
254, 799–803 (2007),
http://dx.doi.org/10.1016/j.apsusc.2007.09.046
[23] M.J. Weber,
Handbook of Optical Materials (CRC,
2003),
https://www.crcpress.com/Handbook-of-Optical-Materials/Weber/9780849335129
[24] D. Faccio, A. Averchi, A. Couairon, A. Dubietis, R.
Piskarskas, A. Matijosius, F. Bragheri, M.A. Porras, A.
Piskarskas, and P. Di Trapani, Competition between phase
matching and stationarity in Kerr-driven optical pulse
filamentation, Phys. Rev. E
74, 047603 (2006),
http://dx.doi.org/10.1103/PhysRevE.74.047603
[25] D. Faccio, A. Averchi, A. Lotti, M. Kolesik, J.V. Moloney,
A. Couairon, and P. Di Trapani, Generation and control of
extreme blueshifted continuum peaks in optical Kerr media, Phys.
Rev. A
78, 033825 (2008),
http://dx.doi.org/10.1103/PhysRevA.78.033825
[26] S. Xu, J. Qiu, C. Li, H. Sun, and A. Xu, Direct writing
waveguides inside YAG crystal by femtosecond laser, Opt. Commun.
282, 4810–4814 (2009),
http://dx.doi.org/10.1016/j.optcom.2009.09.012
[27] D. Paipulas, A. Balskienė, and V. Sirutkaitis, Experimental
study of filamentation and supercontinuum generation in
laser-modified fused silica, Lith. J. Phys.
52, 327–333
(2012),
http://dx.doi.org/10.3952/physics.v52i4.2571
[28] S. Guizard, P. Martin, Ph. Daguzan, G. Petite, P. Audebert,
J.P. Geindre, A. Dos Santos, and A. Antonetti, Contrasted
behavior of an electrongas in MgO, Al
2O
3
and SiO
2, Europhys. Lett.
29, 401–406 (1995),
http://dx.doi.org/10.1209/0295-5075/29/5/009
[29] P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P.
D'Oliveira, P. Meynadier, and M. Perdrix, Subpicosecond study of
carrier trapping dynamics in wide-band-gap crystals, Phys. Rev.
B
55, 5799–5810 (1997),
http://dx.doi.org/10.1103/PhysRevB.55.5799
[30] A. Vaupel, N. Bodner, B. Webb, L. Shah, and M. Richardson,
Concepts, performance review, and prospects of table-top,
few-cycle optical parametric chirped-pulse amplification, Opt.
Eng.
53, 051507 (2014),
http://dx.doi.org/10.1117/1.OE.53.5.051507