[PDF]    http://dx.doi.org/10.3952/physics.v55i2.3101

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 110116 (2015)


SUPERCONTINUUM GENERATION IN YAG AND SAPPHIRE WITH PICOSECOND LASER PULSES
Ieva Gražulevičiūtė, Milda Skeivytė, Enrika Keblytė, Justinas Galinis, Gintaras Tamošauskas, and Audrius Dubietis
Department of Quantum Electronics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: audrius.dubietis@ff.vu.lt

Received 10 March 2015; revised 10 April 2015; accepted 15 June 2015

We report on experimental investigation of supercontinuum generation in YAG and sapphire crystals using 1.1 ps, 1055 nm laser pulses. Under loose focusing conditions a stable single filament is generated without the onset of optical damage within the input power range of 6 to 10 Pcr, as verified from the near and far field measurements, and which gives rise to stable and reproducible supercontinuum spanning from 460 nm to 1.4 μm in YAG, and from 410 nm to 1.3 μm in sapphire. Permanent material modification, which develops under multiple laser shot exposure, is identified as the main limiting factor, which deteriorates the intensity distribution of the filament and dramatically alters the supercontinuum spectra.
Keywords: self-focusing and filamentation, supercontinuum generation, permanent material modification
PACS: 42.65.Jx, 42.65.Re

SUPERKONTINUUMO GENERAVIMAS YAG IR SAFYRO KRISTALUOSE ŽADINANT PIKOSEKUNDINIAIS LAZERIO IMPULSAIS

Ieva Gražulevičiūtė, Milda Skeivytė, Enrika Keblytė, Justinas Galinis, Gintaras Tamošauskas, Audrius Dubietis
Vilniaus universiteto Kvantinės elektronikos katedra, Vilnius, Lietuva

Eksperimentiškai ištirtas superkontinuumo generavimas YAG ir safyro kristaluose žadinant 1,1 ps trukmės, 1055 nm bangos ilgio lazerio impulsais. Švelnaus fokusavimo sąlygomis pradinio impulso galių intervale nuo 6 iki 10 Pcr sužadinta stabili šviesos gija, kuri lėmė gerai atsikartojančio superkontinuumo generavimą ir spektro plėtrą atitinkamai nuo 460 nm iki 1,4 μm YAG ir nuo 410 nm iki 1,3 μm safyro kristaluose. Nustatyta, kad ilgalaikė medžiagos savybių modifikacija dėl daugelio pasikartojančių impulsų poveikio yra lemiamas veiksnys, iškraipantis šviesos gijos intensyvumo skirstinį ir labai modifikuojantis superkontinuumo spektrą.

References / Nuorodos

[1] A. Brodeur and S.L. Chin, Ultrafast white-light continuum generation and self-focusing in transparent condensed media, J. Opt. Soc. Am. B 16, 637–650 (1999),
http://dx.doi.org/10.1364/JOSAB.16.000637
[2] C. Nagura, A. Suda, H. Kawano, M. Obara, and K. Midorikawa, Generation and characterization of ultrafast white-light continuum in condensed media, Appl. Opt. 41, 3735–3742 (2002),
http://dx.doi.org/10.1364/AO.41.003735
[3] V.P. Kandidov, O.G. Kosareva, I.S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C.M. Bowden, and S.L. Chin, Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation), Appl. Phys. B 77, 149–165 (2003),
http://dx.doi.org/10.1007/s00340-003-1214-7
[4] A.K. Dharmadhikari, F.A. Rajgara, and D. Mathur, Systematic study of highly efficient white-light generation in transparent materials using intense femtosecond pulses, Appl. Phys. B 80, 61–66 (2005),
http://dx.doi.org/10.1007/s00340-004-1682-4
[5] J.B. Ashcom, R.R. Gattass, C.B. Schaffer, and E. Mazur, Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica, J. Opt. Soc. Am. B 23, 2317–2322 (2006),
http://dx.doi.org/10.1364/JOSAB.23.002317
[6] M. Bradler, P. Baum, and E. Riedle, Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses, Appl. Phys. B 97, 561–574 (2009),
http://dx.doi.org/10.1007/s00340-009-3699-1
[7] D. Majus, V. Jukna, E. Pileckis, G. Valiulis, and A. Dubietis, Rogue-wave-like statistics in ultrafast white-light continuum generation in sapphire, Opt. Express 19, 16317–16323 (2011),
http://dx.doi.org/10.1364/OE.19.016317
[8] D. Majus and A. Dubietis, Statistical properties of ultrafast supercontinuum generated by femtosecond Gaussian and Bessel beams: a comparative study, J. Opt. Soc. Am. B 30, 994–999 (2013),
http://dx.doi.org/10.1364/JOSAB.30.000994
[9] V. Jukna, J. Galinis, G. Tamošauskas, D. Majus, and A. Dubietis, Infrared extension of femtosecond supercontinuum generated by filamentation in solid-state media, Appl. Phys. B 116, 477–483 (2014),
http://dx.doi.org/10.1007/s00340-013-5723-8
[10] A. Saliminia, S.L. Chin, and R. Vallée, Ultrabroad and coherent white light generation in silica glass by focused femtosecond pulses at 1.5 μm, Opt. Express 13, 5731–5738 (2005),
http://dx.doi.org/10.1364/OPEX.13.005731
[11] E.O. Smetanina, V.O. Kompanets, S.V. Chekalin, A.E. Dormidonov, and V.P. Kandidov, Anti-Stokes wing of femtosecond laser filament supercontinuum in fused silica, Opt. Lett. 38, 16–18 (2013),
http://dx.doi.org/10.1364/OL.38.000016
[12] M. Durand, K. Lim, V. Jukna, E. McKee, M. Baudelet, A. Houard, M. Richardson, A. Mysyrowicz, and A. Couairon, Blueshifted continuum peaks from filamentation in the anomalous dispersion regime, Phys. Rev. A 87, 043820 (2013),
http://dx.doi.org/10.1103/PhysRevA.87.043820
[13] J.A. Dharmadhikari, R.A. Deshpande, A. Nath, K. Dota, D. Mathur, and A.K. Dharmadhikari, Effect of group velocity dispersion on supercontinuum generation and filamentation in transparent solids, Appl. Phys. B 117, 471–479 (2014),
http://dx.doi.org/10.1007/s00340-014-5857-3
[14] F. Silva, D.R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal, Nature Commun. 3, 807 (2012),
http://dx.doi.org/10.1038/ncomms1816
[15] J. Darginavičius, D. Majus, V. Jukna, N. Garejev, G. Valiulis, A. Couairon, and A. Dubietis, Ultrabroadband supercontinuum and third-harmonic generation in bulk solids with two optical-cycle carrier-envelope phase-stable pulses at 2 μm, Opt. Express 21, 25210–25220 (2013),
http://dx.doi.org/10.1364/OE.21.025210
[16] R.R. Alfano, The Supercontinuum Laser Source (Springer, 2006),
http://www.springer.com/us/book/9780387245041
[17] M. Bradler and E. Riedle, in: Advanced Solid-State Photonics (ASSP) 2011, Paper AMD4,
https://www.osapublishing.org/abstract.cfm?uri=ASSP-2011-AMD4
[18] M. Bradler and E. Riedle, in: Lasers and Electro-Optics Europe (CLEO EUROPE/EQEC), 2011 Conference on and 12th European Quantum Electronics Conference, Paper CF3-2,
http://dx.doi.org/10.1109/CLEOE.2011.5942879
[19] M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Hädrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tünnermann, J. Rossbach, M. Drescher, and F. Tavella, Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification, Opt. Lett. 36, 2456–2458 (2011),
http://dx.doi.org/10.1364/OL.36.002456
[20] R. Riedel, A. Stephanides, M.J. Prandolini, B. Gronloh, B. Jungbluth, T. Mans, and F. Tavella, Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers, Opt. Lett. 39, 1422–1424 (2014),
http://dx.doi.org/10.1364/OL.39.001422
[21] S. Xu, J. Qiu, T. Jia, C. Li, H. Sun, and Z. Xu, Femtosecond laser ablation of crystals SiO2 and YAG, Opt. Commun. 274, 163–166 (2007),
http://dx.doi.org/10.1016/j.optcom.2007.01.079
[22] O. Uteza, B. Bussière, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes, Appl. Surf. Sci. 254, 799–803 (2007),
http://dx.doi.org/10.1016/j.apsusc.2007.09.046
[23] M.J. Weber, Handbook of Optical Materials (CRC, 2003),
https://www.crcpress.com/Handbook-of-Optical-Materials/Weber/9780849335129
[24] D. Faccio, A. Averchi, A. Couairon, A. Dubietis, R. Piskarskas, A. Matijosius, F. Bragheri, M.A. Porras, A. Piskarskas, and P. Di Trapani, Competition between phase matching and stationarity in Kerr-driven optical pulse filamentation, Phys. Rev. E 74, 047603 (2006),
http://dx.doi.org/10.1103/PhysRevE.74.047603
[25] D. Faccio, A. Averchi, A. Lotti, M. Kolesik, J.V. Moloney, A. Couairon, and P. Di Trapani, Generation and control of extreme blueshifted continuum peaks in optical Kerr media, Phys. Rev. A 78, 033825 (2008),
http://dx.doi.org/10.1103/PhysRevA.78.033825
[26] S. Xu, J. Qiu, C. Li, H. Sun, and A. Xu, Direct writing waveguides inside YAG crystal by femtosecond laser, Opt. Commun. 282, 4810–4814 (2009),
http://dx.doi.org/10.1016/j.optcom.2009.09.012
[27] D. Paipulas, A. Balskienė, and V. Sirutkaitis, Experimental study of filamentation and supercontinuum generation in laser-modified fused silica, Lith. J. Phys. 52, 327–333 (2012),
http://dx.doi.org/10.3952/physics.v52i4.2571
[28] S. Guizard, P. Martin, Ph. Daguzan, G. Petite, P. Audebert, J.P. Geindre, A. Dos Santos, and A. Antonetti, Contrasted behavior of an electrongas in MgO, Al2O3 and SiO2, Europhys. Lett. 29, 401–406 (1995),
http://dx.doi.org/10.1209/0295-5075/29/5/009
[29] P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals, Phys. Rev. B 55, 5799–5810 (1997),
http://dx.doi.org/10.1103/PhysRevB.55.5799
[30] A. Vaupel, N. Bodner, B. Webb, L. Shah, and M. Richardson, Concepts, performance review, and prospects of table-top, few-cycle optical parametric chirped-pulse amplification, Opt. Eng. 53, 051507 (2014),
http://dx.doi.org/10.1117/1.OE.53.5.051507