Received 10 February 2015; revised 22 April 2015; accepted 15 June
2015
SIDABRO NANODALELIŲ OPTINIAI
NETIESIŠKUMAI, IŠTIRTI NAUDOJANT Z SKENAVIMO METODIKĄ SU
FEMTOSEKUNDINIAIS LAZERINIAIS IMPULSAIS
Straipsnyje pristatomos
nanokompozitinės medžiagos, susidedančios iš sidabro
nanoprizmių, disperguotų distiliuotame vandenyje, tyrimų
rezultatai. Suspensija buvo pagaminta dviejų žingsnių cheminiu
procesu naudojant užkratą. Nanodalelių sugerties spektras parodė
išreikštas plazmonines dalelių savybes. Didėjant prizmių
kraštinei nuo 20 iki 150 nm, sugerties smailė slinko link
ilgesnių bangos ilgių spektriniame diapazone tarp 400 ir 1100
nm. Žadinant nanodaleles didelio intensyvumo femtosekundiniais
lazeriniais impulsais infraraudonojoje spektro dalyje (1200–1400
nm), medžiagoje buvo stebėti netiesiniai optiniai reiškiniai,
pavyzdžiui, praskaidrėjimas, dvifotonė sugertis ir fokusavimas.
References
/
Nuorodos
[1] R. Narayanan and
M.A. El-Sayed, Catalysis with transition metal nanoparticles in
colloidal solution: nanoparticle shape dependence and stability,
J. Phys. Chem. B
109(26), 12663–12676 (2005),
http://dx.doi.org/10.1021/jp051066p
[2] F. Hache, D. Ricard, and C. Flytzanis, Optical
nonlinearities of small metal particles: surface-mediated
resonance and quantum size effects, J. Opt. Soc. Am. B
3(12),
1647–1655 (1986),
http://dx.doi.org/10.1364/JOSAB.3.001647
[3] K.L. Kelly, C. Eduardo, Z. Lin Lin, E. Coronado, L.L. Zhao,
and G.C. Schatz, The optical properties of metal nanoparticles:
the influence of size, shape, and dielectric environment, J.
Phys. Chem. B
107, 668–677 (2003),
http://dx.doi.org/10.1021/jp026731y
[4] R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis,
Nano-groove and 3D fabrication by controlled avalanche using
femtosecond laser pulses, Opt. Mater. Express
3(10),
1674–1686 (2013),
http://dx.doi.org/10.1364/OME.3.001674
[5] M. Sheik-bahae, A.A. Said, and E.W. Van Stryland,
High-sensitivity, single-beam n2 measurements, Opt. Lett.
14(17), 955–957 (1989),
http://dx.doi.org/10.1364/OL.14.000955
[6] M. Chandra, S.S. Indi, and P.K. Das, Depolarized
hyper-Rayleigh scattering from copper nanoparticles, J. Phys.
Chem. C
111(28), 10652–10656 (2007),
http://dx.doi.org/10.1021/jp071847l
[7] S. Eustis and M.A. El-Sayed, Why gold nanoparticles are more
precious than pretty gold: Noble metal surface plasmon resonance
and its enhancement of the radiative and nonradiative properties
of nanocrystals of different shapes, Chem. Soc. Rev.
35(3),
209–217 (2005),
http://dx.doi.org/10.1039/b514191e
[8] R.F. Haglund, R.H. Magruder, K. Becker, R.A. Zuhr, J.E.
Wittig, and L. Yang, Picosecond nonlinear optical response of a
Cu:silica nanocluster composite, Opt. Lett.
18(5),
373–375 (1993),
http://dx.doi.org/10.1364/OL.18.000373
[9] K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara,
A.J. Ikushima, T. Tokizaki, and A. Nakamura, Optical
nonlinearities of a high concentration of small metal particles
dispersed in glass: copper and silver particles, J. Opt. Soc.
Am. B
11(7), 1236–1243 (1994),
http://dx.doi.org/10.1364/JOSAB.11.001236
[10] T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H.
Tanji, and Y. Asahara, Subpicosecond time response of
third‐order optical nonlinearity of small copper particles in
glass, Appl. Phys. Lett.
65(8), 941–943 (1994),
http://dx.doi.org/10.1063/1.112155
[11] Y. Hong, Y.-M. Huh, S.S. Yoon, and J. Yang, Nanobiosensors
based on localized surface plasmon resonance for biomarker
detection, J. Nanomater.
2012, 759830 (2012),
http://dx.doi.org/10.1155/2012/759830
[12] I.H. El-Sayed, X. Huang, and M.A. El-Sayed, Surface plasmon
resonance scattering and absorption of anti-EGFR antibody
conjugated gold nanoparticles in cancer diagnostics:
applications in oral cancer, Nano Lett.
5(5), 829–834
(2005),
http://dx.doi.org/10.1021/nl050074e
[13] S. Eustis and M. El-Sayed, Aspect ratio dependence of the
enhanced fluorescence intensity of gold nanorods: experimental
and simulation study, J. Phys. Chem. B
109(34),
16350–16356 (2005),
http://dx.doi.org/10.1021/jp052951a
[14] T.K. Sau and C.J. Murphy, Room temperature, high-yield
synthesis of multiple shapes of gold nanoparticles in aqueous
solution, JACS
126(28), 8648–8649 (2004),
http://dx.doi.org/10.1021/ja047846d
[15] J.E. Millstone, S. Park, K.L. Shuford, L. Qin, G.C. Schatz,
and C.A. Mirkin, Observation of a quadrupole plasmon mode for a
colloidal solution of gold nanoprisms, JACS
127(15),
5312–5313 (2005),
http://dx.doi.org/10.1021/ja043245a
[16] B.D. Busbee, S.O. Obare, and C.J. Murphy, An improved
synthesis of high-aspect-ratio gold nanorods, Adv. Mater.
15(5),
414–416 (2003),
http://dx.doi.org/10.1002/adma.200390095
[17] T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, and M.A.
El-Sayed, Shape-controlled synthesis of colloidal platinum
nanoparticles, Science
272(5270), 1924–1925 (1996),
http://dx.doi.org/10.1126/science.272.5270.1924
[18] K.K. Caswell, C.M. Bender, and C.J. Murphy, Seedless,
surfactantless wet chemical synthesis of silver nanowires, Nano
Lett.
3(5), 667–669 (2003),
http://dx.doi.org/10.1021/nl0341178
[19] N.R. Jana, L. Gearheart, and C.J. Murphy, Wet chemical
synthesis of silver nanorods and nanowires of controllable
aspect ratio, Chem. Commun.
1(7), 617–618 (2001),
http://dx.doi.org/10.1039/B100521I
[20] Y. Sun, B. Mayers, and Y. Xia, Transformation of silver
nanospheres into nanobelts and triangular nanoplates through a
thermal process, Nano Lett.
3(5), 675–679 (2003),
http://dx.doi.org/10.1021/nl034140t
[21] S. Chen and D.L. Carroll, Synthesis and characterization of
truncated triangular silver nanoplates, Nano Lett.
2(9),
1003–1007 (2002),
http://dx.doi.org/10.1021/nl025674h
[22] M.A. Correa-Duarte, J. Pérez-Juste, A. Sánchez-Iglesias, M.
Giersig, and L.M. Liz-Marzán, Aligning Au nanorods by using
carbon nanotubes as templates, Angew. Chem. Int. Ed.
44(28),
4375–4378 (2005),
http://dx.doi.org/10.1002/anie.200500581
[23] R. Jin, Y. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, and
J.G. Zheng, Photoinduced conversion of silver nanospheres to
nanoprisms, Science
294(5548), 1901–1903 (2001),
http://dx.doi.org/10.1126/science.1066541
[24] J.E. Millstone, G.S. Métraux, and C.A. Mirkin, Controlling
the edge length of gold nanoprisms via a seed-mediated approach,
Adv. Funct. Mater.
16(9), 1209–1214 (2006),
http://dx.doi.org/10.1002/adfm.200600066
[25] M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, and
E.W.V. Stryland, Sensitive measurement of optical nonlinearities
using a single beam, IEEE J. Quantum Electron.
26(4),
760–769 (1990),
http://dx.doi.org/10.1109/3.53394
[26] P.B. Chapple, J. Staromlynska, J.A. Hermann, and T.J.
Mckay, Single-beam Z-scan: measurement techniques and analysis,
J. Nonlinear Opt. Phys. Mater.
6(3), 251–293 (1997),
http://dx.doi.org/10.1142/S0218863597000204
[27] T. Xia, D.J. Hagan, M. Sheik-Bahae, and E.W. Van Stryland,
Eclipsing Z-scan measurement of λ/104 wave-front distortion,
Opt. Lett.
19(5), 317–319 (1994),
http://dx.doi.org/10.1364/OL.19.000317
[28] E.W. Van Stryland and M. Sheik-Bahae, in:
Characterization
Techniques and Tabulations for Organic Nonlinear Materials,
eds. M.G. Kuzyk and C.W. Dirk (Marcel Dekker, 1998) pp. 655–692,
http://www.optics.unm.edu/sbahae/publications/z-scan.pdf
[29] M. Sheik-Bahae and M.P. Hasselbeck, in:
OSA Handbook of
Optics, Vol. 4 (McGraw-Hill, 2001) pp. 17.13–17.38,
http://www.optics.unm.edu/sbahae/publications/OSA-Handbook%20of%20Optics-IV-Ch17.pdf
[30] N. Okada, Y. Hamanaka, A. Nakamura, I. Pastoriza-Santos,
and L.M. Liz-Marzán, Linear and nonlinear optical response of
silver nanoprisms: local electric fields of dipole and
quadrupole plasmon resonances, J. Phys. Chem. B
108(26),
8751–8755 (2004),
http://dx.doi.org/10.1021/jp048193q
[31] L.J. Sherry, R. Jin, C.A. Mirkin, G.C. Schatz, and R.P. Van
Duyne, Localized surface plasmon resonance spectroscopy of
single silver triangular nanoprisms, Nano Lett.
6(9),
2060–2065 (2006),
http://dx.doi.org/10.1021/nl061286u
[32] U. Gurudas, E. Brooks, D.M. Bubb, S. Heiroth, T. Lippert,
and A. Wokaun, Saturable and reverse saturable absorption in
silver nanodots at 532 nm using picosecond laser pulses, J.
Appl. Phys.
104(7), 073107–073108 (2008),
http://dx.doi.org/10.1063/1.2990056
[33] F. Guang-Hua, Q. Shi-Liang, G. Zhong-Yi, W. Qiang, and L.
Zhong-Guo, Size-dependent nonlinear absorption and refraction of
Ag nanoparticles excited by femtosecond lasers, Chin. Phys. B
21(4), 047804 (2012),
http://dx.doi.org/10.1088/1674-1056/21/4/047804
[34] T. Cesca, P. Calvelli, G. Battaglin, P. Mazzoldi, and G.
Mattei, Nonlinear optical response of gold–silver nanoplanets,
Radiat. Eff. Defect. Solids
167(7), 520–526 (2012),
http://dx.doi.org/10.1080/10420150.2012.680458
[35] X. Wang, F. Nan, S. Liang, L. Zhou, and Q. Wang, Optical
properties of silver nanoplates synthesized by photoinduced
method, Wuhan Univ. J. Nat. Sci.
18(3), 201–206 (2013),
http://dx.doi.org/10.1007/s11859-013-0915-y
[36] D. Rativa, R.E. de Araujo, and A.S. Gomes, One photon
nonresonant high-order nonlinear optical properties of silver
nanoparticles in aqueous solution, Opt. Express
16(23),
19244–19252 (2008),
http://dx.doi.org/10.1364/OE.16.019244
[37] Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi,
Dispersion curves of complex third-order optical
susceptibilities around the surface plasmon resonance in Ag
nanocrystal–glass composites, J. Opt. Soc. Am. B
20(6),
1227–1232 (2003),
http://dx.doi.org/10.1364/JOSAB.20.001227
[38] G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, Pd
nanoparticles formation by femtosecond laser irradiation and the
nonlinear optical properties at 532 nm using nanosecond laser
pulses, J. Appl. Phys.
109(2), 023102 (2011),
http://dx.doi.org/10.1063/1.3533738
[39] P. Lama, A. Suslov, A.D. Walser, and R. Dorsinville,
Plasmon assisted enhanced nonlinear refraction of monodispersed
silver nanoparticles and their tunability, Opt. Express
22(11),
14014–14021 (2014),
http://dx.doi.org/10.1364/OE.22.014014
[40] I. Pastoriza-Santos and L.M. Liz-Marzán, Synthesis of
silver nanoprisms in DMF, Nano Lett.
2(8), 903–905
(2002),
http://dx.doi.org/10.1021/nl025638i
[41] B.-H. Yu, D.-L. Zhang, Y.-B. Li, and Q.-B. Tang, Nonlinear
optical behaviors in a silver nanoparticle array at different
wavelengths, Chin. Phys. B
22(1), 014212 (2013),
http://dx.doi.org/10.1088/1674-1056/22/1/014212