[PDF]    http://dx.doi.org/10.3952/physics.v55i2.3104

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 132141 (2015)


ELECTRICAL RESISTANCE AND MAGNETORESISTANCE OF HIGHLY ORIENTED AND POLYCRYSTALLINE La0.67Sr0.33MnO3/MgO(001) THIN FILMS
Bonifacas Vengalisa, Irina Černiukėa, Andrius Maneikisa, Antanas Kleopas Oginskisa, and Gražina Grigaliūnaitė-Vonsevičienėb
aCenter for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: veng@pfi.lt
bVilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania

Received 6 February 2015; revised 28 February 2015; accepted 15 June 2015

La0.67Sr0.33MnO3 thin films exhibiting a highly (001)-plane oriented and polycrystalline structure with a variable amount of (011)-textured crystallites have been grown in situ by RF magnetron sputtering on crystalline MgO(001) substrates by changing deposition temperature from 550 to 800 °C. Competing contribution of grains and grain boundaries to resistivity and magnetoresistance of the films has been investigated at T = (78–330) K. A model based on two parallel channels of current flow across grain boundaries has been applied to explain coexistence of low (LFMR) and high field (HFMR) magnetoresistance effects in the polycrystalline films at low temperatures. The LFMR effect has been understood assuming tunnelling of spin-polarized carriers via magnetic field-driven tunnelling barriers formed naturally between neighbouring misoriented grains. Meanwhile, the HFMR phenomenon has been associated with magnetic field-dependent hopping of carriers via the intergrain regions with reduced carrier density. Importance of the phase separation phenomenon on possible inhomogeneity of the material at grain boundaries has been discussed.
Keywords: LSMO thin films, grain boundaries, electrical resistivity, low field magnetoresistance
PACS: 73.43 Qt, 73.61-r, 71.30.+h, 75.70

PLONŲJŲ TEKSTŪRUOTŲ IR POLIKRISTALINIŲ La0,67Sr0,33MnO3/MgO(001) SLUOKSNIŲ ELEKTRINĖ VARŽA IR MAGNETOVARŽA

Bonifacas Vengalisa, Irina Černiukėa, Andrius Maneikisa, Antanas Kleopas Oginskisa, Gražina Grigaliūnaitė-Vonsevičienėb
aFizinių ir technologijos mokslų centras, Vilnius, Lietuva
bVilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Plonieji (100) plokštumoje orientuoti La0,67Sr0,33MnO3 (LSMO) sluoksniai, taip pat polikristaliniai LSMO sluoksniai su papildomais (110) plokštumoje orientuotais kristalitais buvo užauginti magnetroninio dulkinimo būdu keičiant kristalinių MgO(100) padėklų temperatūrą nuo 550 iki 800 °C. Ištirta kristalinių grūdų ir tarpkristalinių sričių įtaka sluoksnių elektrinei varžai ir magnetovaržai 78–330 K temperatūrų ruože. Tarpkristalinių ribų magnetovaržai silpnuose (LFMR) ir stipriuose (HFMR) magnetiniuose laukuose paaiškinti buvo pasitelktas dviejų lygiagrečių elektrai laidžių kanalų modelis. LFMR reiškinys polikristaliniuose LSMO sluoksniuose paaiškintas krūvininkų su orientuotais sukiniais tuneliavimu per magnetiniu lauku valdomą tunelinį barjerą, susidarantį technologinio proceso metu tarp gretimų skirtingai orientuotų kristalinių grūdų. Žymi polikristalinių sluoksnių magnetovarža, esant žemoms temperatūroms ir stipriems magnetiniams laukams, buvo susieta su šuoliniu krūvininkų transportu per tarpkristalines sritis, pasižyminčias sumažinta krūvininkų koncentracija. Aptarta galima fazinio išsisluoksniavimo reiškinio įtaka nevienalytei tarpgrūdinei terpei susidaryti tiriamuosiuose polikristaliniuose LSMO sluoksniuose.

References / Nuorodos

[1] M. Ziese, Extrinsic magnetotransport phenomena in ferromagnetic oxides, Rep. Prog. Phys. 65, 143–249 (2002),
http://dx.doi.org/10.1088/0034-4885/65/2/202
[2] P.K. Siwach, H.K. Singh, and O.N. Srivastava, Low field magnetotransport in manganites, J. Phys. Condens. Matter 20, 273201 (43pp) (2008),
http://dx.doi.org/10.1088/0953-8984/20/27/273201
[3] L. Balcells, J. Fontcuberta, B. Martínez, and X. Obradors, High-field magnetoresistance at interfaces in manganese perovskites, Phys. Rev. B 589(22), R14697–147000 (1998),
http://dx.doi.org/10.1103/PhysRevB.58.R14697
[4] M. Ziese, Grain-boundary magnetoresistance in manganites: Spin-polarized inelastic tunneling through a spin-glass-like barrier, Phys. Rev. B 60(2), R738–741 (1999),
http://dx.doi.org/10.1103/PhysRevB.60.R738
[5] A. Gupta, G.Q. Gong, G. Xiao, P.R. Duncombe, P. Lecoeur, P. Trouilloud, Y.Y. Wang, V.P. Dravid, and J.Z. Sun, Grain-boundary effects on the magnetoresistance properties of perovskite manganite films, Phys. Rev. B 54(22), R15629–15632 (1996),
http://dx.doi.org/10.1103/PhysRevB.54.R15629
[6] M. Paranjape, J. Mitra, A.K. Raychaudhuri, N.K. Todd, N.D. Mathur, and M.G. Blamire, Nonlinear electrical transport through artificial grain-boundary junctions in La0.7Ca0.3MnO3 epitaxial thin films, Phys. Rev. B 68, 144409 (2003),
http://dx.doi.org/10.1103/PhysRevB.68.144409
[7] R. Gross, L. Alff, B. Buchner, B.H. Freitag, C. Hofener, J. Klein, Y. Lu, W. Mader, J.B. Philipp, M.S.R. Rao, P. Reutler, S. Ritter, S. Thienhaus, B. Uhlenbruck, and B. Wiedenhorst, Physics of grain boundaries in the colossal magnetoresistance manganites, J. Magn. Magn. Mater. 211, 150–159 (2000),
http://dx.doi.org/10.1016/S0304-8853(99)00727-1
[8] J. Rivas, L.E. Hueso, A. Fondado, F. Rivadulla, and M.A. Lopez-Quintela, Low field magnetoresistance effects in fine particles of La0.67Ca0.33MnO3 perovskites, J. Magn. Magn. Mater. 221, 57–62 (2000),
http://dx.doi.org/10.1016/S0304-8853(00)00384-X
[9] P.K. Muduli, G. Singh, R. Sharma, and R.C. Budhani, Magnetotransport in polycrystalline La2/3Sr1/3MnO3 thin films of controlled granularity, J. Appl. Phys. 105, 113910 (2009),
http://dx.doi.org/10.1063/1.3124372
[10] J.-M. Liu, G.L. Yuan, Q. Huang, J. Li, Z.G. Liu, and Y.W. Du, The effect of the deposition temperature on the low-field magnetoresistance of polycrystalline La0.5Sr0.5MnO3 thin films produced by pulsed laser deposition, J. Phys. Condens. Matter 13, 11–23 (2001),
http://dx.doi.org/10.1088/0953-8984/13/1/302
[11] S. Ju, H. Sun, and Z.Y. Li, Study of magnetotransport in polycrystalline perovskite manganites, J. Phys. Condens. Matter 14, L631–L639 (2002),
http://dx.doi.org/10.1088/0953-8984/14/38/102
[12] M. Julliere, Tunneling between ferromagnetic films, Phys. Lett. A 54(3), 225–226 (1975),
http://dx.doi.org/10.1016/0375-9601(75)90174-7
[13] H.Y. Hwang, S-W. Cheong, N.P. Ong, and B. Batlogg, Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3, Phys. Rev. Lett. 77(10), 2041–2044 (1996),
http://dx.doi.org/10.1103/PhysRevLett.77.2041
[14] J.E. Evetts, M.G. Blamire, N.D. Mathur, S.P. Isaac, B.S. Teo, L.F. Cohen, and J.L. Macmanus-Driscoll, Defect-induced spin disorder and magnetoresistance in single-crystal and polycrystal rare-earth manganite thin films, Phil. Trans. R. Soc. Lond. A 356, 1593–1615 (1998),
http://dx.doi.org/10.1098/rsta.1998.0237
[15] S. Ju, K.W. Yu, and Z.Y. Li, Theory of ingranular magnetoresistance in nanometric manganites, Phys. Rev. B 71, 014416 (2005),
http://dx.doi.org/10.1103/PhysRevB.71.014416
[16] R. Gunnarsson, A. Kadigrobov, and Z. Ivanov, Model for spin-polarized transport in perovskite manganite bicrystal grain boundaries, Phys. Rev. B 66, 024404 (2002),
http://dx.doi.org/10.1103/PhysRevB.66.024404
[17] N. Zurauskiene, S. Balevicius, P. Cimmperman, V. Stankevic, S. Kersulis, J. Novickij, A. Abrutis, and V. Plausinaitiene, Colossal magnetoresistance of La0.83Sr0.17MnO3 thin films grown by MOCVD on lucalox substrate, J. Low Temp. Phys. 159, 64–67 (2010),
http://dx.doi.org/10.1007/s10909-009-0073-y
[18] A. de Andres, M. Garcia-Hernandez, and J.L. Martinez, Conduction channels and magnetoresistance in polycrystalline manganites, Phys. Rev. B 60(10), 7328–7334 (1999),
http://dx.doi.org/10.1103/PhysRevB.60.7328
[19] A. de Andres, M. Garcia-Hernandez, J.L. Martinez, and C. Prieto, Low-temperature magnetoresistance in polycrystalline manganites: connectivity versus grain size, Appl. Phys. Lett. 74(25), 3884–3886 (1999),
http://dx.doi.org/10.1063/1.124212
[20] S. Mercone, C.A. Perroni, V. Cataudella, C. Adamo, M. Angeloni, C. Aruta, G. De Filippis, F. Miletto, A. Oropallo, P. Perna, A. Yu. Petrov, U. Scotti di Uccio, and L. Maritato, Transport properties in manganite thin films, Phys. Rev. B 71, 064415 (2005),
http://dx.doi.org/10.1103/PhysRevB.71.064415
[21] M. Egilmez, R. Patterson, K.H. Chow, and J. Jung, Magnetoresistive anisotropy and magnetoresistivity in strained La0.65Ca0.35MnO3 films near the metal-insulator transition, Appl. Phys. Lett. 90, 232506 (2007),
http://dx.doi.org/10.1063/1.2746956
[22] R. Gunnarsson and M. Hanson, Magnetization reversal processes in magnetic bicrystal junctions, Phys. Rev. B 73, 014435 (2006),
http://dx.doi.org/10.1103/PhysRevB.73.014435
[23] M. Spankova, S. Chromik, I. Vavra, K. Sedlackova, P. Lobotka, S. Lucas, and S. Stancek, Epitaxial LSMO films grown on MgO single crystalline substrates, Appl. Surf. Sci. 253, 7599–7603 (2007),
http://dx.doi.org/10.1016/j.apsusc.2007.03.058
[24] P. Raychaudhuri, K. Sheshadri, P. Taneja, S. Bandyopadhyay, P. Ayyub, A.K. Nigam, and R. Pinto, Spin-polarized tunneling in the half-metallic ferromagnets La0.7-xHoxSr0.3MnO3 (x = 0 and 0.15): Experiment and theory, Phys. Rev. B 59(21), 13919–13926 (1999),
http://dx.doi.org/10.1103/PhysRevB.59.13919
[25] A. Chen, W. Zhang, J. Jian, H. Wang, C.F. Tsai, Q. Su, Q. Sia, and J.L. MacManus-Driscoll, Role of boundaries on low-field magnetotransport properties of La0.7Sr0.3MnO3-based nanocomposite thin films, J. Mater. Res. 28(13), 1707–1714 (2013),
http://dx.doi.org/10.1557/jmr.2013.89
[26] E. Dagotto, T. Hotta, and A. Moreo, Colossal magnetoresistant materials: the key role of phase separation, Phys. Rep. 344, 1 (2001),
http://dx.doi.org/10.1016/S0370-1573(00)00121-6
[27] J. Sacanell, F. Parisi, J.C.P. Campoy, and L. Ghivelder, Thermodynamic modeling of phase separation in manganites, Phys. Rev. B 73, 014403 (2006),
http://dx.doi.org/10.1103/PhysRevB.73.014403
[28] M. Bibes, L. Balcells, S. Valencia, J. Fontcuberta, M. Wojcik, E. Jedryka, and S. Nadolski, Nanoscale multiphase separation at La2/3Ca1/3MnO3/SrTiO3 interfaces, Phys. Rev. Lett. 87, 067210 (2001),
http://dx.doi.org/10.1103/PhysRevLett.87.067210
[29] M.H. Jo, N.D. Mathur, N.K. Todd, and M.G. Blamire, Very large magnetoresistance and coherent switching in half-metallic manganite tunnel junctions, Phys. Rev. B 61(22), R14905 (2000),
http://dx.doi.org/10.1103/PhysRevB.61.R14905