[PDF]    http://dx.doi.org/10.3952/physics.v55i3.3145

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 162–173 (2015)


ENERGY SPECTRA OF the TUNGSTEN ION 4s24pN, 4s24pN–14d AND 4s4pN+1 CONFIGURATIONS
Pavel Bogdanovich, Rasa Karpuškienė, and Romualdas Kisielius
Institute of Theoretical Physics and Astronomy, Vilnius University, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: pavelas.bogdanovicius@tfai.vu.lt

Received 31 March 2015; revised 4 June 2015; accepted 4 June 2015

The ab initio quasirelativistic Hartree–Fock approximation was used to determine spectroscopic parameters for the multi-charged tungsten ions with an open 4p shell. The configuration interaction method based on the transformed radial orbitals was applied to include the electron-correlation effects. The relativistic effects were taken into account in the Breit–Pauli approximation for the quasirelativistic Hartree–Fock radial orbitals. The complete energy level spectra were calculated for the 4s24pN, 4s24pN–14d and 4s4pN+1 configurations of the tungsten ions from W43+ to W38+.
Keywords: quasirelativistic approach, many-electron ions, energy levels, tungsten
PACS: 31.10.+Z, 31.15.ag, 32.70.Cs


VOLFRAMO JONŲ 4s24pN, 4s24pN–14d IR 4s4pN+1 KONFIGŪRACIJŲ ENERGIJOS SPEKTRAI
Pavelas Bogdanovičius, Rasa Karpuškienė, Romualdas Kisielius
Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Taikant kvazireliatyvistinį Hartrio ir Foko artinį, ištirti volframo jonai nuo W38+ iki W43+. Atlikti skaičiavimai įtraukiant koreliacinius efektus konfigūracijų sąveikos artėjime, naudota transformuotų radialiųjų orbitalių bazė. Suskaičiuotos pagrindinių konfigūracijų 4s24pN bei sužadintų konfigūracijų 4s24pN–14d ir 4s4pN+1 lygmenų energijos. Gauti rezultatai palyginti su esamais eksperimentiniais ir teoriniais duomenimis. Jonams W42+, W41+, W40+ ir W38+ visi tiriamųjų konfigūracijų energijos lygmenų spektrai gauti pirmą kartą. Jonų W43+ ir W39+ energijos lygmenys nustatyti didesniu tikslumu, palyginti su kitų autorių duomenimis.


References / Nuorodos

[1] J. Reader, Spectral data for fusion energy: from W to W, Phys. Scr. T134, 014023 (2009),
http://dx.doi.org/10.1088/0031-8949/2009/T134/014023
[2] C. Skinner, Atomic physics in the quest for fusion energy and ITER, Phys. Scr. T134, 014022 (2009),
http://dx.doi.org/10.1088/0031-8949/2009/T134/014022
[3] A.E. Kramida and T. Shirai, Energy levels and spectral lines of tungsten, W III through W LXXIV, At. Data Nucl. Data Tables 95, 305–474 (2009),
http://dx.doi.org/10.1016/j.adt.2008.12.002
[4] A.E. Kramida, Recent progress in spectroscopy of tungsten, Can. J. Phys. 89, 551–570 (2011),
http://dx.doi.org/10.1139/p11-045
[5] P. Bogdanovich, R. Karpuškienė, and R. Kisielius, Quasirelativistic calculation of 4s24p5, 4s24p44d and 4s4p6 configuration spectroscopic parameters for the W39+ ion, Phys. Scripta 90, 035401 (2015),
http://dx.doi.org/10.1088/0031-8949/90/3/035401
[6] K.B. Fournier, Atomic data and spectral line intensities for highly ionized tungsten (Co-like W47+ to Rb-like W37+) in a high-temperature, low-density plasma, At. Data Nucl. Data Tables 68, 1–48 (1998),
http://dx.doi.org/10.1006/adnd.1997.0756
[7] M. Klapisch, J.L. Schwob, B. Fraenkel, and J. Oreg, The 1s–3p Kβ-like x-ray spectrum of highly ionized iron, J. Opt. Soc. Am 67, 148–155 (1977),
http://dx.doi.org/10.1364/JOSA.67.000148
[8] P. Quinet, A theoretical survey of atomic structure and forbidden transitions in the 4pk and 4dk ground configurations of tungsten ions W29+ through W43+, J. Phys. B 45, 025003 (2012),
http://dx.doi.org/10.1088/0953-4075/45/2/025003
[9] P. Quinet, É. Biémont, P. Palmeri, and E. Träbert, Multiconfiguration Dirac–Fock wavelengths and transition rates in the X-ray spectra of highly charged Ga-like ions from Yb39+ to U61+, At. Data Nucl. Data Tables 93, 167–182 (2007),
http://dx.doi.org/10.1016/j.adt.2006.09.001
[10] F. Hu, C. Wang, J. Yang, G. Jiang, and L. Hao, Multiconfiguration Dirac–Fock calculations of transition probabilities of some tungsten ions, Phys. Scripta 84, 015302 (2011),
http://dx.doi.org/10.1088/0031-8949/84/01/015302
[11] L.-H. Hao and X.-P. Kang, Energy levels and spectral lines in the X-ray spectra of highly charged W XLIV, Eur. Phys. J. D 68, 203 (2014),
http://dx.doi.org/10.1140/epjd/e2014-50056-0
[12] J. Clementson, P. Beiersdorfer, T. Brage, and M.F. Gu, Atomic data and theoretical X-ray spectra of Ge-like through V-like W ions, At. Data Nucl. Data Tables 100, 577–649 (2014),
http://dx.doi.org/10.1016/j.adt.2013.07.002
[13] R. Karpuškienė, O. Rancova, and P. Bogdanovich, An ab initio study of the spectral properties of W II, J. Phys. B 43, 085002 (2010),
http://dx.doi.org/10.1088/0953-4075/43/8/085002
[14] P. Bogdanovich and R. Kisielius, Theoretical energy level spectra and transition data for 4p64d, 4p64f and 4p54d2 configurations of W37+ ion, At. Data Nucl. Data Tables 98, 557–565 (2012),
http://dx.doi.org/10.1016/j.adt.2011.11.004
[15] P. Bogdanovich and R. Kisielius, Theoretical energy level spectra and transition data for 4p64d2, 4p64d4f, and 4p54d3 configurations of W36+, At. Data Nucl. Data Tables 99, 580–594 (2013),
http://dx.doi.org/10.1016/j.adt.2012.11.001
[16] P. Bogdanovich and R. Kisielius, Energy level properties of 4p64d3, 4p64d24f, and 4p54d4 configurations of W35+, At. Data Nucl. Data Tables 100, 1593–1602 (2014),
http://dx.doi.org/10.1016/j.adt.2014.06.003
[17] P. Bogdanovich, V. Jonauskas, and O. Rancova, Solving quasi-relativistic equations for hydrogenlike ions with account of the finite size of a nucleus, Nucl. Instrum. Methods B 235, 145–148 (2005),
http://dx.doi.org/10.1016/j.nimb.2005.03.162
[18] P. Bogdanovich and O. Rancova, Quasirelativistic Hartree–Fock equations consistent with Breit–Pauli approach, Phys. Rev. A 74(5), 052501 (2006),
http://dx.doi.org/10.1103/PhysRevA.74.052501
[19] P. Bogdanovich and O. Rancova, Adjustment of the quasirelativistic equations for p electrons, Phys. Rev. A 76, 012507 (2007),
http://dx.doi.org/10.1103/PhysRevA.76.012507
[20] P. Bogdanovich and O. Rancova, Quasirelativistic approach for ab initio study of highly charged ions, Phys. Scripta 78, 045301 (2008),
http://dx.doi.org/10.1088/0031-8949/78/04/045301
[21] P. Bogdanovich and R. Karpuškienė, Numerical methods of the preliminary evaluation of the role of admixed configurations in atomic calculations, Comput. Phys. Commun. 134, 321–334 (2001),
http://dx.doi.org/10.1016/S0010-4655(00)00214-9
[22] P. Bogdanovich, R. Karpuškienė, and A. Momkauskaitė, Some problems of calculation of energy spectra of complex atomic configurations, Comput. Phys. Commun. 143, 174–180 (2002),
http://dx.doi.org/10.1016/S0010-4655(01)00446-5
[23] A. Hibbert, R. Glass, and C. Froese Fischer, A general program for computing angular integrals of the Breit–Pauli Hamiltonian, Comput. Phys. Commun. 64, 445–472 (1991),
http://dx.doi.org/10.1016/0010-4655(91)90138-B
[24] C. Froese Fischer, M.R. Godefroid, and A. Hibbert, A program for performing angular integrations for transition operators, Comput. Phys. Commun. 64, 486–500 (1991),
http://dx.doi.org/10.1016/0010-4655(91)90140-G
[25] C. Froese Fischer and M.R. Godefroid, Programs for computing LS and LSJ transitions from MCHF wave functions, Comput. Phys. Commun. 64, 501–519 (1991),
http://dx.doi.org/10.1016/0010-4655(91)90141-7
[26] G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, An efficient approach for spin-angular integrations in atomic structure calculations, J. Phys. B 30, 3747–3771 (1997),
http://dx.doi.org/10.1088/0953-4075/30/17/006
[27] G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, Reduced coefficients (subcoefficients) of fractional parentage for p-, d-, and f-shells, At. Data Nucl. Data Tables 70, 1–39 (1998),
http://dx.doi.org/10.1006/adnd.1998.0782
[28] A. Kramida, Yu Ralchenko, J. Reader, and NIST ASD Team (2014), NIST Atomic Spectra Database (version 5.2) (National Institute of Standards and Technology, Gaithersburg, MD, 2014),
http://physics.nist.gov/asd
[29] C. Froese Fischer, Evaluation and comparison of the configuration interaction calculations for complex atoms, Atoms 2, 1–14 (2014),
http://dx.doi.org/10.3390/atoms2010001
[30] S. Aggarwal, A.K.S. Jha, and M. Mohan, Multiconfigurational Dirac–Fock energy levels and radiative rates for Br-like tungsten, Can. J. Phys. 91, 394–400 (2013),
http://dx.doi.org/10.1139/cjp-2013-0013
[31] K.M. Aggarwal and F.P. Keenan, Energy levels, radiative rates, and lifetimes for transitions in W XL, At. Data Nucl. Data Tables 100, 1399–1518 (2014),
http://dx.doi.org/10.1016/j.adt.2014.02.006
[32] C. Biedermann, R. Radtke, R. Seidel, and T. Pütterich, Spectroscopy of highly charged tungsten ions relevant to fusion plasmas, Phys. Scripta T134, 014026 (2009),
http://dx.doi.org/10.1088/0031-8949/2009/T134/014026
[33] R. Karpuškienė, P. Bogdanovich, and R. Kisielius, Significance of M2 and E3 transitions for 4p54dN+1- and 4p64dN–14f-configuration metastable-level lifetimes, Phys. Rev. A 88, 022519 (2013),
http://dx.doi.org/10.1103/PhysRevA.88.022519
[34] P. Bogdanovich, R. Kisielius, and D. Stonys, Methods, algorithms, and computer codes for calculation of electron-impact excitation parameters, Lith. J. Phys. 54, 67–79(2014),
http://dx.doi.org/10.3952/lithjphys.54201