Received 31 March 2015; revised 4 June 2015; accepted 4 June 2015
Taikant kvazireliatyvistinį
Hartrio ir Foko artinį, ištirti volframo jonai nuo W38+
iki W43+. Atlikti skaičiavimai įtraukiant
koreliacinius efektus konfigūracijų sąveikos artėjime, naudota
transformuotų radialiųjų orbitalių bazė. Suskaičiuotos
pagrindinių konfigūracijų 4s24pN
bei sužadintų konfigūracijų 4s24pN–14d
ir 4s4pN+1 lygmenų energijos. Gauti rezultatai
palyginti su esamais eksperimentiniais ir teoriniais duomenimis.
Jonams W42+, W41+, W40+ ir W38+
visi tiriamųjų konfigūracijų energijos lygmenų spektrai gauti
pirmą kartą. Jonų W43+ ir W39+ energijos
lygmenys nustatyti didesniu tikslumu, palyginti su kitų autorių
duomenimis.
References
/ Nuorodos
[1] J. Reader,
Spectral data for fusion energy: from
W to
W,
Phys. Scr.
T134, 014023 (2009),
http://dx.doi.org/10.1088/0031-8949/2009/T134/014023
[2] C. Skinner, Atomic physics in the quest for fusion energy
and ITER, Phys. Scr.
T134, 014022 (2009),
http://dx.doi.org/10.1088/0031-8949/2009/T134/014022
[3] A.E. Kramida and T. Shirai, Energy levels and spectral lines
of tungsten, W III through W LXXIV, At. Data Nucl. Data Tables
95,
305–474 (2009),
http://dx.doi.org/10.1016/j.adt.2008.12.002
[4] A.E. Kramida, Recent progress in spectroscopy of tungsten,
Can. J. Phys.
89, 551–570 (2011),
http://dx.doi.org/10.1139/p11-045
[5] P. Bogdanovich, R. Karpuškienė, and R. Kisielius,
Quasirelativistic calculation of 4s
24p
5,
4s
24p
44d and 4s4p
6
configuration spectroscopic parameters for the W
39+
ion, Phys. Scripta
90, 035401 (2015),
http://dx.doi.org/10.1088/0031-8949/90/3/035401
[6] K.B. Fournier, Atomic data and spectral line intensities for
highly ionized tungsten (Co-like W
47+ to Rb-like W
37+)
in a high-temperature, low-density plasma, At. Data Nucl. Data
Tables
68, 1–48 (1998),
http://dx.doi.org/10.1006/adnd.1997.0756
[7] M. Klapisch, J.L. Schwob, B. Fraenkel, and J. Oreg, The
1s–3p K
β-like x-ray spectrum of highly ionized iron, J.
Opt. Soc. Am
67, 148–155 (1977),
http://dx.doi.org/10.1364/JOSA.67.000148
[8] P. Quinet, A theoretical survey of atomic structure and
forbidden transitions in the 4p
k and 4d
k
ground configurations of tungsten ions W
29+ through W
43+,
J. Phys. B
45, 025003 (2012),
http://dx.doi.org/10.1088/0953-4075/45/2/025003
[9] P. Quinet, É. Biémont, P. Palmeri, and E. Träbert,
Multiconfiguration Dirac–Fock wavelengths and transition rates
in the X-ray spectra of highly charged Ga-like ions from Yb
39+
to U
61+, At. Data Nucl. Data Tables
93,
167–182 (2007),
http://dx.doi.org/10.1016/j.adt.2006.09.001
[10] F. Hu, C. Wang, J. Yang, G. Jiang, and L. Hao,
Multiconfiguration Dirac–Fock calculations of transition
probabilities of some tungsten ions, Phys. Scripta
84,
015302 (2011),
http://dx.doi.org/10.1088/0031-8949/84/01/015302
[11] L.-H. Hao and X.-P. Kang, Energy levels and spectral lines
in the X-ray spectra of highly charged W XLIV, Eur. Phys. J. D
68,
203 (2014),
http://dx.doi.org/10.1140/epjd/e2014-50056-0
[12] J. Clementson, P. Beiersdorfer, T. Brage, and M.F. Gu,
Atomic data and theoretical X-ray spectra of Ge-like through
V-like W ions, At. Data Nucl. Data Tables
100, 577–649
(2014),
http://dx.doi.org/10.1016/j.adt.2013.07.002
[13] R. Karpuškienė, O. Rancova, and P. Bogdanovich, An
ab
initio study of the spectral properties of W II, J. Phys.
B 43, 085002 (2010),
http://dx.doi.org/10.1088/0953-4075/43/8/085002
[14] P. Bogdanovich and R. Kisielius, Theoretical energy level
spectra and transition data for 4p
64d, 4p
64f
and 4p
54d
2 configurations of W
37+
ion, At. Data Nucl. Data Tables
98, 557–565 (2012),
http://dx.doi.org/10.1016/j.adt.2011.11.004
[15] P. Bogdanovich and R. Kisielius, Theoretical energy level
spectra and transition data for 4p
64d
2, 4p
64d4f,
and 4p
54d
3 configurations of W
36+,
At. Data Nucl. Data Tables
99, 580–594 (2013),
http://dx.doi.org/10.1016/j.adt.2012.11.001
[16] P. Bogdanovich and R. Kisielius, Energy level properties of
4p
64d
3, 4p
64d
24f,
and 4p
54d
4 configurations of W
35+,
At. Data Nucl. Data Tables
100, 1593–1602 (2014),
http://dx.doi.org/10.1016/j.adt.2014.06.003
[17] P. Bogdanovich, V. Jonauskas, and O. Rancova, Solving
quasi-relativistic equations for hydrogenlike ions with account
of the finite size of a nucleus, Nucl. Instrum. Methods B
235,
145–148 (2005),
http://dx.doi.org/10.1016/j.nimb.2005.03.162
[18] P. Bogdanovich and O. Rancova, Quasirelativistic
Hartree–Fock equations consistent with Breit–Pauli approach,
Phys. Rev. A
74(5), 052501 (2006),
http://dx.doi.org/10.1103/PhysRevA.74.052501
[19] P. Bogdanovich and O. Rancova, Adjustment of the
quasirelativistic equations for
p electrons, Phys. Rev.
A
76, 012507 (2007),
http://dx.doi.org/10.1103/PhysRevA.76.012507
[20] P. Bogdanovich and O. Rancova, Quasirelativistic approach
for
ab initio study of highly charged ions, Phys.
Scripta
78, 045301 (2008),
http://dx.doi.org/10.1088/0031-8949/78/04/045301
[21] P. Bogdanovich and R. Karpuškienė, Numerical methods of the
preliminary evaluation of the role of admixed configurations in
atomic calculations, Comput. Phys. Commun.
134, 321–334
(2001),
http://dx.doi.org/10.1016/S0010-4655(00)00214-9
[22] P. Bogdanovich, R. Karpuškienė, and A. Momkauskaitė, Some
problems of calculation of energy spectra of complex atomic
configurations, Comput. Phys. Commun.
143, 174–180
(2002),
http://dx.doi.org/10.1016/S0010-4655(01)00446-5
[23] A. Hibbert, R. Glass, and C. Froese Fischer, A general
program for computing angular integrals of the Breit–Pauli
Hamiltonian, Comput. Phys. Commun.
64, 445–472 (1991),
http://dx.doi.org/10.1016/0010-4655(91)90138-B
[24] C. Froese Fischer, M.R. Godefroid, and A. Hibbert, A
program for performing angular integrations for transition
operators, Comput. Phys. Commun.
64, 486–500 (1991),
http://dx.doi.org/10.1016/0010-4655(91)90140-G
[25] C. Froese Fischer and M.R. Godefroid, Programs for
computing
LS and
LSJ transitions from MCHF wave
functions, Comput. Phys. Commun.
64, 501–519 (1991),
http://dx.doi.org/10.1016/0010-4655(91)90141-7
[26] G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, An
efficient approach for spin-angular integrations in atomic
structure calculations, J. Phys. B
30, 3747–3771 (1997),
http://dx.doi.org/10.1088/0953-4075/30/17/006
[27] G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, Reduced
coefficients (subcoefficients) of fractional parentage for
p-,
d-, and
f-shells, At. Data Nucl. Data Tables
70,
1–39 (1998),
http://dx.doi.org/10.1006/adnd.1998.0782
[28] A. Kramida, Yu Ralchenko, J. Reader, and NIST ASD Team
(2014),
NIST Atomic Spectra Database (version 5.2)
(National Institute of Standards and Technology, Gaithersburg,
MD, 2014),
http://physics.nist.gov/asd
[29] C. Froese Fischer, Evaluation and comparison of the
configuration interaction calculations for complex atoms, Atoms
2, 1–14 (2014),
http://dx.doi.org/10.3390/atoms2010001
[30] S. Aggarwal, A.K.S. Jha, and M. Mohan, Multiconfigurational
Dirac–Fock energy levels and radiative rates for Br-like
tungsten, Can. J. Phys.
91, 394–400 (2013),
http://dx.doi.org/10.1139/cjp-2013-0013
[31] K.M. Aggarwal and F.P. Keenan, Energy levels, radiative
rates, and lifetimes for transitions in W XL, At. Data Nucl.
Data Tables
100, 1399–1518 (2014),
http://dx.doi.org/10.1016/j.adt.2014.02.006
[32] C. Biedermann, R. Radtke, R. Seidel, and T. Pütterich,
Spectroscopy of highly charged tungsten ions relevant to fusion
plasmas, Phys. Scripta
T134, 014026 (2009),
http://dx.doi.org/10.1088/0031-8949/2009/T134/014026
[33] R. Karpuškienė, P. Bogdanovich, and R. Kisielius,
Significance of
M2 and
E3 transitions for 4p
54d
N+1-
and 4p
64d
N–14f-configuration
metastable-level lifetimes, Phys. Rev. A 88, 022519 (2013),
http://dx.doi.org/10.1103/PhysRevA.88.022519
[34] P. Bogdanovich, R. Kisielius, and D. Stonys, Methods,
algorithms, and computer codes for calculation of
electron-impact excitation parameters, Lith. J. Phys.
54,
67–79(2014),
http://dx.doi.org/10.3952/lithjphys.54201