and Stanisław D. Głazek
Received 21 May 2015; revised 22 June 2015; accepted 29 September
2015
Ridge-like correlations in
high-energy proton–proton collisions reported by the CMS
collaboration suggest a collective flow that resembles the one
in heavy-ion collisions. If the hydrodynamic description is
valid, then the effect results from the initial anisotropy of
the colliding matter which depends on the structure of protons.
Following recent theoretical developments, we propose several
phenomenological models of the proton structure and calculate
the anisotropy coefficients using the Monte Carlo Glauber model.
Our estimates suggest that the event multiplicity dependence
allows one to discriminate between different proton models.
References
/ Nuorodos
[1] V. Khachatryan et al. [CMS Collaboration],
Observation of long-range, near-side angular correlations in
proton–proton collisions at the LHC, J. High Energy Phys.
1009,
091 (2010),
http://dx.doi.org/10.1007/JHEP09(2010)091
[2] H. Białkowska, The ridge effect from p-p to Pb-Pb (and
back), Acta Phys. Pol. B
43, 705 (2012),
http://dx.doi.org/10.5506/APhysPolB.43.705
[3] W. Li, Observation of a “Ridge” correlation structure in
high multiplicity proton–proton collisions: a brief review, Mod.
Phys. Lett. A
27, 1230018 (2012),
http://dx.doi.org/10.1142/S0217732312300182
[4] P. Bożek, Elliptic flow in proton–proton collisions at
=
7 TeV, Eur. Phys. J. C
71, 1530 (2011),
http://dx.doi.org/10.1140/epjc/s10052-010-1530-0
[5] D. d’Enterria, G.Kh. Eyyubova, V.L. Korotkikh, I.P. Lokhtin,
S.V. Petrushanko, L.I. Sarycheva, and A.M. Snigirev, Estimates
of hadron azimuthal anisotropy from multiparton interactions in
proton–proton collisions at
=
14 TeV, Eur. Phys. J. C
66, 173 (2010),
http://dx.doi.org/10.1140/epjc/s10052-009-1232-7
[6] J. Casalderrey-Solana and U.A. Wiedemann, Eccentricity
fluctuations make flow measurable in high multiplicity
p-p
collisions, Phys. Rev. Lett.
104, 102301 (2010),
http://dx.doi.org/10.1103/PhysRevLett.104.102301
[7] S.K. Prasad, V. Roy, S. Chattopadhyay, and A.K. Chaudhuri,
Elliptic flow (υ2) in
pp collisions at energies
available at the CERN Large Hadron Collider: a hydrodynamical
approach, Phys. Rev. C
82, 024909 (2010),
http://dx.doi.org/10.1103/PhysRevC.82.024909
[8] P. Bożek, Observation of the collective flow in
proton–proton collisions, Acta Phys. Pol. B
41, 837
(2010),
http://arxiv.org/abs/0911.2392
[9] G. Ortona, G.S. Denicol, P. Mota, and T. Kodama, Elliptic
flow in high multiplicity proton–proton collisions at
=
14 TeV as a signature of deconfinement and quantum energy
density fluctuations, arXiv:0911.5158 [hep-ph] (2009),
http://arxiv.org/abs/0911.5158
[10] T. Pierog, S. Porteboeuf, I. Karpenko, and K. Werner,
Collective flow in (anti)proton–proton collision at Tevatron and
LHC, arXiv:1005.4526 [hep-ph] (2010),
http://arxiv.org/abs/1005.4526
[11] I. Bautista, L. Cunqueiro, J. Dias de Deus, and C. Pajares,
Particle production azimuthal asymmetries in a clustering of
color sources model, J. Phys. G
37, 015103 (2010),
http://dx.doi.org/10.1088/0954-3899/37/1/015103
[12] E. Avsar, Ch. Flensburg, Y. Hatta, J.-Y. Ollitrault, and T.
Ueda, Eccentricity and elliptic flow in proton–proton collisions
from parton evolution, Phys. Lett. B
702, 394 (2011),
http://dx.doi.org/10.1016/j.physletb.2011.07.031
[13] W.-T. Deng, Z. Xu, and C. Greiner, Elliptic and triangular
flow and their correlation in ultrarelativistic high
multiplicity proton–proton collisions at 14 TeV, Phys. Lett. B
711,
301 (2012),
http://dx.doi.org/10.1016/j.physletb.2012.04.010
[14] M.L. Miller, K. Reygers, S.J. Sanders, and P. Steinberg,
Glauber modeling in high energy nuclear collisions, Ann. Rev.
Nucl. Part. Sci.
57, 205 (2007),
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123020
[15] H.J. Drescher, A. Dumitru, C. Gombeaud, and J.Y.
Ollitrault, the centrality dependence of elliptic flow, The
hydrodynamic limit, and the viscosity of hot QCD, Phys. Rev. C
76,
024905 (2007),
http://dx.doi.org/10.1103/PhysRevC.76.024905
[16] B. Alver and G. Roland, Collision geometry fluctuations and
triangular flow in heavy-ion collisions, Phys. Rev. C
81,
054905 (2010),
http://dx.doi.org/10.1103/PhysRevC.81.054905
[17] J.D. Bjorken, S.J. Brodsky, and A.S. Goldhaber, Possible
multiparticle ridge-like correlations in very high multiplicity
proton–proton collisions, Phys. Lett. B
726, 344 (2013),
http://dx.doi.org/10.1016/j.physletb.2013.08.066
[18] S.D. Głazek, Hypothesis of quark binding by condensation of
gluons in hadrons, Few-Body Syst.
52, 367 (2012),
http://dx.doi.org/10.1007/s00601-011-0282-1
[19] S. Chatrchyan et al. [CMS Collaboration], Measurement of
the inelastic proton–proton cross section at
=
7 TeV, Phys. Lett. B
722, 5 (2013),
http://dx.doi.org/10.1016/j.physletb.2013.03.024
[20] J.-P. Blaizot, W. Broniowski, and J.-Y. Ollitrault,
Correlations in the Monte Carlo Glauber model, Phys. Rev. C
90,
034906 (2014),
http://dx.doi.org/10.1103/PhysRevC.90.034906
[21] V. Khachatryan et al. [CMS Collaboration], Charged particle
multiplicities in
pp interactions at
=
0.9, 2.36 and 7 TeV, J. High Energy Phys.
1101, 079
(2011),
http://dx.doi.org/10.1007/JHEP01(2011)079
[22] A. Białas, M. Błeszyński, and W. Czyż, Multiplicity
distributions in nucleus-nucleus collisions at high energies,
Nucl. Phys. B
111, 461 (1976),
http://dx.doi.org/10.1016/0550-3213(76)90329-1
[23] G. Altarelli, N. Cabibbo, L. Maiani, and R. Petronzio, The
nucleon as a bound state of three quarks and deep inelastic
phenomena, Nucl. Phys. B
69, 531 (1974),
http://dx.doi.org/10.1016/0550-3213(74)90452-0
[24] L. Van Hove and S. Pokorski, High-energy hadron-hadron
collisions and internal hadron structure, Nucl. Phys. B
86,
243 (1975),
http://dx.doi.org/10.1016/0550-3213(75)90443-5
[25] R.C. Hwa, Evidence for valence-quark clusters in nucleon
structure functions, Phys. Rev. D
22, 759 (1980),
http://dx.doi.org/10.1103/PhysRevD.22.759