Received 22 May 2015; revised 11 June 2015; accepted 29 September
2015
Dilatometric tests, thermal
mechanical analysis (TMA), quasistatic tensile tests,
hydrostatic weighting, and scanning electron microscopy (SEM)
were performed on the multiwalled carbon nanotube (MWCNT)/epoxy
nanocomposite (NC) with different filler content (c =
0–3.8% wt.) in order to determine the influence of MWCNT content
on the thermophysical and mechanical properties of NC. The
experimental results show the physical properties versus the
nanofiller content and the existence of the optimal MWCNT
content (1% wt.) in epoxy resin that maximally improves the
thermophysical properties of NC in comparison with unfilled
epoxy. Thus, NC with 1% wt. filler content shows the maximal
decrease of thermal expansion coefficient by 68%, the maximal
increase of glass transition temperature and tensile strength by
23 °C and 18%, respectively. Comparing the results it can be
seen that after exceeding the defined optimal filler content
over 1% wt. the investigated properties get worse. The
correlation between the investigated mechanical and
thermophysical properties is estimated and reported.
References
/ Nuorodos
[1] J.
Bicerano, Prediction of Polymer Properties (Marcel Dekker, New
York, 2002) pp. 368–455,
http://dx.doi.org/10.1002/pi.1643
[2] P. LeBaron, Z. Wang, and T.I. Pinnavaia, Polymerlayered
silicate nanocomposites: an overview, Appl. Clay Sci.
15,
11–29 (1999),
http://dx.doi.org/10.1016/S0169-1317(99)00017-4
[3] K. Aniskevich, O. Starkova, J. Jansons, and A. Aniskevich,
Viscoelastic properties of a silica-filled styrene-butadiene
rubber under uniaxial tension, Mech. Compos. Mater.
46,
375–386 (2010),
http://dx.doi.org/10.1007/s11029-010-9154-x
[4] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S.
Seal, Graphene based materials: Past, present and future, Progr.
Mater. Sci.
56, 1178–1271 (2011),
http://dx.doi.org/10.1016/j.pmatsci.2011.03.003
[5] M. Moniruzzaman and K.I. Winey, Polymer nanocomposites
containing carbon nanotubes, Macromolecules
39,
5194–5205 (2006),
http://dx.doi.org/10.1021/ma060733p
[6] D.R. Paul and L.M. Robeson, Polymer nanotechnology:
Nanocomposites, Polymer
49(15), 3187–3204 (2008),
http://dx.doi.org/10.1016/j.polymer.2008.04.017
[7] I. Vera-Agullo, A. Gloria-Pereira, H. Varela-Rizo, J.L.
Gonzales, and I. Martin-Gullon, Comparative study of the
dispersion and functional properties of multiwall carbon
nanotubes and helical-ribbon carbon nanofibers in polyester
nanocomposites, Compos. Sci. Techn.
69, 1521–1532
(2009),
http://dx.doi.org/10.1016/j.compscitech.2008.11.032
[8] H.S. Khare and D.L. Burris, Quantitative method for
measuring nanocomposite dispersion, Polymer
51, 719–729
(2010),
http://dx.doi.org/10.1016/j.polymer.2009.12.031
[9] Z.K. Chen, J.P. Yang, Q.Q. Ni, S.Y. Fu., and Y.G. Huang,
Reinforcement of epoxy resins with multi-walled walled carbon
nanotubes for enhancing cryogenic mechanical properties, Polymer
50, 4753–4759 (2009),
http://dx.doi.org/10.1016/j.polymer.2009.08.001
[10] M. Abdalla, D. Dean, M. Theodore, J. Fielding, . Nyairo,
and G. Price, Magnetically processed carbon nanotube/epoxy
nanocomposites: Morphology, thermal, and mechanical properties,
Polymer
51, 1614–1620 (2010),
http://dx.doi.org/10.1016/j.polymer.2009.05.059
[11] R.D. Maksimov, J. Bitenieks, E. Plume, J. Zicans, and R.
Merijs Meri, The effect of introduction of carbon nanotubes on
the physicomechanical properties of poly vinylacetate, Mech.
Compos. Mater.
46(3), 237–242 (2010),
http://dx.doi.org/10.1007/s11029-010-9142-1
[12] L. Bokobza, Multiwall carbon nanotube elastomeric
composites: a review, Polymer
48, 719–729 (2007),
http://dx.doi.org/10.1016/j.polymer.2007.06.046
[13] A. Warrier, A. Godara, O. Rochez, L. Mezzo, F. Luizi, L.
Gorbatikh, S.V. Lomov, A.V.V. Willem, and I. Verpoest, The
effect of adding carbon nanotubes to glass/epoxy composites in
the fibre sizing and/or the matrix, Compos. Appl. Sci. Manuf.
41,
532–538 (2010),
http://dx.doi.org/10.1016/j.compositesa.2010.01.001
[14] A. Martone, C. Formicola, M. Giordano, and M. Zarrelli,
Reinforcement efficiency of multiwalled carbon nanotube/epoxy
nano composites, Compos. Sci. Tech.
70, 1154–1160
(2010),
http://dx.doi.org/10.1016/j.compscitech.2010.03.001
[15] A. Martone, V. Faiella, V. Antonucci, M. Giordano, and M.
Zarrelli, The effect of the aspect ratio of carbon nanotubes on
their effective reinforcement modulus in an epoxy matrix,
Compos. Sci. Tech.
71, 1117–1123 (2011),
http://dx.doi.org/10.1016/j.compscitech.2011.04.002
[16] H.W. Wang, H.W. Zhou, R.D. Peng, and L. Mishnoevsky Jr.,
Nanoreinforced polymer composites: 3D FEM modeling with
effective interface concept, Compos. Sci. Tech.
71,
980–988 (2011),
http://dx.doi.org/10.1016/j.compscitech.2011.03.003
[17] S.Y. Fu, X.Q. Feng, B. Lauke, and Y.W. Mai, Effect of
particle size, particle/matrix interface adhesion and particle
loading on mechanical properties of particulate composites,
Compos. B Eng.
39, 933–961 (2008),
http://dx.doi.org/10.1016/j.compositesb.2008.01.002
[18] S.G. Prolongo, M. Campo, M.R. Gude, R. Chaos-Moran, and A.
Urena, Thermo-physical characterization of epoxy resin
reinforced by amino-functionalized carbon nanofibers, Compos.
Sci. Tech.
69, 349–357 (2009),
http://dx.doi.org/10.1016/j.compscitech.2008.10.018
[19] A. Montazeri, K. Pourshamsian, and M. Riazian, Viscoelastic
properties and determination of free volume fraction of
multi-walled carbon nanotube/ epoxy composite using dynamic
mechanical thermal analysis, Mater. Des.
36, 408–414
(2012),
http://dx.doi.org/10.1016/j.matdes.2011.11.038
[20] V.K. Srivastava, Modeling and mechanical performance of
carbon nanotube/epoxy resin composites, Mater. Des.
39,
432–436 (2012),
http://dx.doi.org/10.1016/j.matdes.2012.02.039
[21] T. Glaskova, M. Zarrelli, A. Borisova, K. Timchenko, A.
Aniskevich, and M. Giordano, Method of quantitative analysis of
filler dispersion in composite systems with spherical
inclusions, Compos. Sci. Tech.
71, 1543–1549 (2011),
http://dx.doi.org/10.1016/j.compscitech.2011.06.009
[22] T. Glaskova, M. Zarrelli, A. Aniskevich, M. Giordano, L.
Trinkler, and B. Berzina, Quantitative optical analysis of
filler dispersion degree in MWCNT-epoxy nanocomposite, Compos.
Sci. Tech.
72, 477–481 (2012),
http://dx.doi.org/10.1016/j.compscitech.2011.11.029
[23] Technical data sheet of LH289 and H289 products, provided
by
Havel Composites company, 2009,
http://www.havel-composites.cz