[PDF]    http://dx.doi.org/10.3952/physics.v55i3.3149

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 200–207 (2015)


Cr3+ DOPED YTTRIUM GALLIUM GARNET FOR PHOSPHOR-CONVERSION LIGHT EMITTING DIODES
Akvilė Zabiliūtė-Karaliūnėa, Henrikas Dapkusa, Rokas Paulius Petrauskasb, Skirmantė Butkutėb, Artūras Žukauskasa, and Aivaras Kareivab
aInstitute of Applied Research, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius, Lithuania
E-mail: akvile.zabiliute@tmi.vu.lt
bDepartment of General and Inorganic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

Received 22 May 2015; revised 2 July 2015; accepted 29 September 2015

In this work Y3Ga5O12 doped with 8.7 mol% Cr3+ (YGG:Cr) far-red phosphor pellets calcined at 1000, 1200, 1300, and 1400 °C temperatures were synthesized by a simple and low cost sol–gel method. The YGG:Cr pellets were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM) and the luminescent properties were studied by measuring diffuse reflection, photoluminescence (PL), PL excitation (PLE) and internal quantum efficiency (QE). The XRD and SEM results have shown that the material becomes more crystalline, uniform and less porous for higher calcination temperatures. XRD results have also shown that the material becomes strained due to the doping with Cr3+ ions for the calcination temperature of 1400 °C. The diffuse reflection and PLE spectra have shown three absorption and excitation bands in the UV, blue and red spectral regions. PL was characterized by a broad band in the far-red spectral region that peaked at about 711 nm. QE has shown a strong dependence on the calcination temperature. Furthermore, using the previously synthesized YGG:Cr phosphor powder and a commercial blue InGaN LED, a far-red–blue phosphor converted LED (pcLED) lamp was designed and characterized. Blue–far-red pcLEDs could be used in greenhouses in order to meet the photophysiological needs of plants.
Keywords: Light-emitting diodes, phosphors, photoluminescence, far-red light, sol–gel
PACS: 78.55.Hx, 81.20.Fw, 85.60.Jb


Cr3+ LEGIRUOTAS ITRIO GALIO GRANATAS, SKIRTAS KONVERSIJOS FOSFORE ŠVIESOS DIODAMS
Akvilė Zabiliūtė-Karaliūnėa, Henrikas Dapkusa, Rokas Paulius Petrauskasb, Skirmantė Butkutėb, Artūras Žukauskasa, Aivaras Kareivab
aVilniaus universiteto Taikomųjų mokslų institutas, Vilnius, Lietuva
bVilniaus universiteto Bendrosios ir neorganinės chemijos katedra, Vilnius, Lietuva

Darbe pristatomos paprastu ir nebrangiu zolių-gelių metodu susintetintos Y3Ga5O12 fosforo tabletės, legiruotos 8,7 mol % Cr3+ (YGG:Cr) bei iškaitintos 1000, 1200, 1300 ir 1400 °C temperatūrose. YGG:Cr tabletės buvo ištirtos rentgeno spindulių difrakcijos (XRD) bei skenuojančios elektronų mikroskopijos (SEM) metodais, liuminescencinės savybės ištirtos išmatavus difuzinį atspindį, fotoliuminescenciją (PL), PL sužadinimą (PLE) ir vidinę kvantinę išeigą (QE). XRD ir SEM matavimai parodė, kad didinant iškaitinimo temperatūrą, medžiaga tampa kristališkesnė, tolydesnė ir mažiau porėta. XRD rezultatai taip pat atskleidė, kad tabletėje, iškaitintoje 1400 °C temperatūroje, dėl legiravimo Cr3+ jonais atsiranda įtempimai. Difuzinio atspindžio ir PLE spektrai atskleidė tris sugerties ir sužadinimo linijas UV, mėlynoje ir raudonoje spektro srityse. PL spektrai parodė, kad PL pasižymi plačia juosta tolimoje raudonoje spektro srityje, kurios maksimumas yra ties maždaug 711 nm. Nustatyta, kad QE stipriai priklauso nuo iškaitinimo temperatūros. Be to, naudojant anksčiau susintetintus YGG:Cr fosforo miltelius ir prekinį mėlyną InGaN šviesos diodą, sukurta ir ištirta mėlyna–tolima raudona konversijos fosfore kietakūnė lempa. Tokia lempa gali būti naudojama šiltnamiuose augalų fotofiziologiniams poreikiams tenkinti.


References / Nuorodos
[1] D. Despommier, The Vertical Farm: Feeding the World in the 21st Century (St. Martin’s Press, USA, 2010),
http://www.amazon.co.uk/Vertical-Farm-Feeding-World-Century/dp/1400168295
[2] S.J. Kim, E.J. Hahn, J.W. Heo, and K.Y. Paek, Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro, Sci. Hortic. 101(1), 143–151 (2004),
http://dx.doi.org/10.1016/j.scienta.2003.10.003
[3] H. Shimizu, Y. Saito, H. Nakashima, J. Miyasaka, and K. Ohdoi, Light environment optimization for lettuce growth in plant factory, in: Proceedings of the 18th IFAC World Congress, Vol. 18 (International Federation of Automatic Control, Milano, 2011) pp. 605–609,
http://dx.doi.org/10.3182/20110828-6-IT-1002.02683
[4] N. Yeh and J.-P. Chung, High-brightness LEDs – energy efficient lighting sources and their potential in indoor plant cultivation, Renew. Sust. Energ. Rev. 13(8), 2175–2180 (2009),
http://dx.doi.org/10.1016/j.rser.2009.01.027
[5] R.C. Morrow, LED lighting in horticulture, HortScience 43(7), 1947–1950 (2008),
http://hortsci.ashspublications.org/content/43/7/1947.abstract
[6] G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breivė, R. Ulinskaitė, A. Brazaitytė, A. Novičkovas, and A. Žukauskas, High-power light-emitting diode based facility for plant cultivation, J. Phys. D 38(17), 3182–3187 (2005),
http://dx.doi.org/10.1088/0022-3727/38/17/020
[7] R.J. Bula, R.C. Morrow, T.W. Tibbitts, D.J. Barta, R.W. Ignatius, and T.S. Martin, Light-emitting diodes as a radiation source for plants, HortScience 26(2), 203–205 (1991),
http://hortsci.ashspublications.org/content/26/2/203.abstract
[8] C.S. Brown, A.C. Schuerger, and J.C. Sager, Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting, J. Am. Soc. Hortic. Sci. 120(5), 808–813 (1995),
http://dx.doi.org/10.1088/0022-3727/38/17/020
[9] M.S. McDonald, Photobiology of Higher Plants (Wiley, England, 2003),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470855231.html
[10] W.M. Yen and M.J. Weber, Inorganic Phosphors: Compositions, Preparation and Optical Properties (CRC Press, USA, 2004),
https://www.crcpress.com/Inorganic-Phosphors-Compositions-Preparation-and-Optical-Properties/Yen-Weber/9780849319495
[11] M.D. Seltzer, Interpretation of the emission spectra of trivalent chromium-doped garnet crystals using Tanabe–Sugano diagrams, J. Chem. Educ. 72(10), 886–888 (1995),
http://dx.doi.org/10.1021/ed072p886
[12] B. Struve and G. Huber, The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystals, Appl. Phys. B 36(4), 195–201 (1985),
http://dx.doi.org/10.1007/BF00704574
[13] K. Petermann and G. Huber, Broad band fluorescence of transition metal doped garnets and tungstates, J. Lumin. 31–32, 71–77 (1984),
http://dx.doi.org/10.1016/0022-2313(84)90207-2
[14] M. Yamaga, A. Marshall, K.P. O’Donnell, B. Henderson, and Y. Miyazaki, Photoluminescence of Cr3+ ions in RF-sputtered YGG thin films, J. Lumin. 39(6), 335–341 (1988),
http://dx.doi.org/10.1016/0022-2313(88)90014-2
[15] W. Liu, Q. Zhang, L. Ding, D. Sun, J. Xiao, and S. Yin, Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12, Physica B 403(19–20), 3403–3405 (2008),
http://dx.doi.org/10.1016/j.physb.2008.04.043
[16] L. Kostyk, A. Luchechko, Y. Zakharko, O. Tsvetkova, and B. Kuklinski, Cr-related centers in Gd3Ga5O12 polycrystals, J. Lumin. 129(3), 312–316 (2009),
http://dx.doi.org/10.1016/j.jlumin.2008.10.011
[17] A. Zabiliūtė, S. Butkutė, A. Žukauskas, P. Vitta, and A. Kareiva, Sol–gel synthesized far-red chromium-doped garnet phosphors for phosphor-conversion light-emitting diodes that meet the photomorphogenetic needs of plants, Appl. Opt. 53(5), 907–914 (2014),
http://dx.doi.org/10.1364/AO.53.000907
[18] J.C. de Mello, H.F. Wittmann, and R. Friend, An improved experimental determination of external photoluminescence quantum efficiency, Adv. Mater. 9(3), 230–232 (1997),
http://dx.doi.org/10.1002/adma.19970090308
[19] V.K. Pecharsky and P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd ed. (Springer, US, 2009),
http://dx.doi.org/10.1007/978-0-387-09579-0
[20] G. Blasse, B.C. Grabmaier, and M. Ostertag, The afterglow mechanism of chromium-doped gadolinium gallium garnet, J. Alloys Comp. 200(1–2), 17–18 (1993),
http://dx.doi.org/10.1016/0925-8388(93)90464-x
[21] A. Žukauskas, Puslaidininkiniai šviestukai (Progretus, Lietuva, 2008)