Received 22 May 2015; revised 23 August 2015; accepted 29
September 2015
An experimental study of the
efficiency of recently predicted photonic crystal (PhC) based
spatial filtering is provided. Photonic structures are
fabricated using a direct laser writing technique employing
point-by-point modification by tightly focused femtosecond
pulses in soda–lime glass. Such PhCs are characterized by using
an s-coefficient – a parameter defining PhC filter
efficiency. We explore the dependences of filtering efficiency
on different laser writing conditions, such as irradiation peak
intensity and the polarization of laser beam. In addition, we
show that the PhCs can also exhibit even asymmetric shapes of
voxels under particular conditions.
Erdvinis filtravimas dažnai
naudojamas lazerinių pluoštų erdvinei kokybei gerinti. Neseniai
buvo parodytas erdvinis pluoštų filtravimas fotoniniais
kristalais (FK) [24]. Šiame darbe tiriama šių naujo tipo FK
erdvinių filtrų efektyvumo priklausomybė nuo FK įrašymo sąlygų.
Fotoniniai dariniai suformuoti tiesioginio lazerinio rašymo būdu
taikant pataškinį medžiagos lūžio rodiklio modifikavimą aštriai
sufokusuotais femtosekundiniais impulsais natrio-kalcio
silikatiniame stikle. Tokie FK yra apibūdinami panaudojus s-koeficientą
– parametrą, skirtą apibrėžti FK filtro efektyvumą. Nagrinėjama
filtravimo efektyvumo priklausomybė nuo skirtingų lazerinio
įrašymo sąlygų, pavyzdžiui, smailinio spinduliuotės intensyvumo
ir lazerio pluošto poliarizacijos. Parodoma, kad esant
atitinkamoms įrašymo sąlygoms FK gali pasižymėti asimetriška
vokselių sandara.
References
/ Nuorodos
[1] A.E.
Siegman, Defining, measuring, and optimizing laser beam quality,
Proc. SPIE
1868, 2–12 (1993),
http://dx.doi.org/10.1117/12.150601
[2] J.I. Kato, I. Yamaguchi, and H. Tanaka, Nonlinear spatial
filtering with a dye-doped liquid-crystal cell, Opt. Lett.
21,
767 (1996),
http://dx.doi.org/10.1364/OL.21.000767
[3] I. Moreno, J.J. Araiza, and M. Avendano-Alejo, Thin-film
spatial filters, Opt. Lett.
30, 914 (2005),
http://dx.doi.org/10.1364/OL.30.000914
[4] D. Shurig and D.R. Smith, Spatial filtering using media with
indefinite permittivity and permeability tensors, Appl. Phys.
Lett.
82, 2215 (2003),
http://dx.doi.org/10.1063/1.1562344
[5] O.F. Siddiqui and G. Eleftheriades, Resonant modes in
continuous metallic grids over ground and related
spatial-filtering applications, J. Appl. Phys.
99,
083102 (2006),
http://dx.doi.org/10.1063/1.2189929
[6] A. Žukauskas, M. Malinauskas, and E. Brasselet, Monolithic
generators of pseudo-nondiffracting optical vortex beams at the
microscale, Appl. Phys. Lett.
103, 181122 (2013),
http://dx.doi.org/10.1063/1.4828662
[7] E. Colak, A.O. Cakmak, A.E. Serebryannikov, and E. Ozbay,
Spatial filtering using dielectric photonic crystals at
beam-type excitation, J. Appl. Phys.
108, 113106 (2010),
http://dx.doi.org/10.1063/1.3498810
[8] A.Y. Petrov and E. Ozbay, Toward photonic crystal based
spatial filters with wide angle ranges of total transmission,
Appl. Phys. Lett.
94, 181101 (2009),
http://dx.doi.org/10.1063/1.3127443
[9] Z. Luo, Z. Tang, Y. Xiang, H. Luo, and S. Wen,
Polarization-independent low-pass spatial filters based on
one-dimensional photonic crystals containing negative-index
materials, Appl. Phys. Lett. B
94, 641–646 (2009),
http://dx.doi.org/10.1007/s00340-009-3376-4
[10] Z. Tang, D. Fan, S. Wen, Y. Ye, and C. Zhao, Low-pass
spatial filtering using a two-dimensional self-collimating
photonic crystal, Chin. Opt. Lett.
5(S1), S211–S213
(2007),
https://www.osapublishing.org/col/abstract.cfm?uri=col-5-101-S211
[11] E. Yablonovitch, Inhibited spontaneous emission in
solid-state physics and electronics, Phys. Rev. Lett.
58,
2059–2062 (1987),
http://dx.doi.org/10.1103/PhysRevLett.58.2059
[12] R. Pico, V.J. Sanchez-Morcillo, I. Perez-Arjona, and K.
Staliunas, Spatial filtering of sound beams by sonic crystals,
Appl. Acoust.
73, 302–306 (2012),
http://dx.doi.org/10.1016/j.apacoust.2011.09.011
[13] R. Pico, I. Perez-Arjona, V.J. Sanchez-Morcillo, and K.
Staliunas, Evidences of spatial (angular) filtering of sound
beams by sonic crystals, Appl. Acoust.
74, 945–948
(2013),
http://dx.doi.org/10.1016/j.apacoust.2013.01.003
[14] K. Staliunas and V.J. Sanchez-Morcillo, Spatial filtering
of light by chirped photonic crystals, Phys. Rev. A
79(5),
053807 (2009),
http://dx.doi.org/10.1103/PhysRevA.79.053807
[15] L. Maigyte, T. Gertus, M. Peckus, J. Trull, C. Cojocaru, V.
Sirutkaitis, and K. Staliunas, Signatures of light-beam spatial
filtering in a three-dimensional photonic crystal, Phys. Rev. A
82(4), 043819 (2010),
http://dx.doi.org/10.1103/PhysRevA.82.043819
[16] V. Purlys, L. Maigyte, D. Gailevicius, M. Peckus, M.
Malinauskas, and K. Staliunas, Spatial filtering by chirped
photonic crystals, Phys. Rev. A
87, 033805 (2013),
http://dx.doi.org/10.1103/PhysRevA.87.033805
[17] V. Purlys, L. Maigyte, D. Gailevicius, M. Peckus, M.
Malinauskas, R. Gadonas, and K. Staliunas, Spatial filtering by
axisymmetric photonic microstructures, Opt. Lett.
39(4),
929–932 (2014),
http://dx.doi.org/10.1364/OL.39.000929
[18] D. Gailevicius, V. Purlys, L. Maigyte, M. Peckus, and K.
Staliunas, Chirped axisymmetric photonic microstructures for
spatial filtering, J. Nanophoton.
8(1), 084094 (2014),
http://dx.doi.org/10.1117/1.JNP.8.084094
[19] K. Staliunas, Removal of excitations of Bose-Einstein
condensates by space- and time-modulated potentials, Phys. Rev.
A
84, 013626 (2011),
http://dx.doi.org/10.1103/PhysRevA.84.013626
[20] A. Žukauskas, G. Batavičiūtė, M. Ščiuka, T. Jukna, A.
Melninkaitis, and M. Malinauskas, Characterization of
photopolymers used in laser 3D micro/nanolithography by means of
laser-induced damage threshold (LIDT), Opt. Mater.
4(8),
1601–1616 (2014),
http://dx.doi.org/10.1364/OME.4.001601
[21] J. Fischer and M. Wegener, Three-dimensional optical laser
lithography beyond the diffraction limit, Laser Photonics Rev.
7(1),
22–44 (2013),
http://dx.doi.org/10.1002/lpor.201100046
[22] V. Purlys, L. Maigyte, D. Gailevicius, M. Peckus, R.
Gadonas, and K. Staliunas, Super-collimation by axisymmetric
photonic crystals, Appl. Phys. Lett.
104, 221108 (2014),
http://dx.doi.org/10.1063/1.4881839
[23] L. Maigyte, V. Purlys, J. Trull, M. Peckus, C. Cojocaru, D.
Gailevicius, M. Malinauskas, and K. Staliunas, Flat lensing in
visible frequency range by woodpile photonic crystals, Opt.
Lett.
38(14), 2376–2378 (2013),
http://dx.doi.org/10.1364/OL.38.002376
[24] L. Maigyte and K. Staliunas, Spatial filtering with
photonic crystals, App. Phys. Rev.
2, 011102 (2015),
http://dx.doi.org/10.1063/1.4907345
[25] C. Malouin, A. Villeneuve, G. Vitrant, and R.A. Lessard,
Degenerate four-wave mixing geometry in thin-film waveguides for
nonlinear material characterization, Opt. Lett.
21(1),
21–23 (1996),
http://dx.doi.org/10.1364/OL.21.000021
[26] S. Nolte, M. Will, J. Burghoff, and A. Tuennermann,
Femtosecond waveguide writing: a new avenue to three-dimensional
integrated optics, Appl. Phys. A
77(1), 109–111 (2003),
http://dx.doi.org/10.1007/s00339-003-2088-6
[27] H. Zhang, S.M. Eaton, and P.R. Herman, Single-step writing
of Bragg grating waveguides in fused silica with an externally
modulated femtosecond fiber laser, Opt. Lett.
32(17),
2559 (2007),
http://dx.doi.org/10.1364/OL.32.002559
[28] M. Beresna, M. Gecevičius, P.G. Kazansky, and T. Gertus,
Radially polarized optical vortex converter created by
femtosecond laser nanostructuring of glass, Appl. Phys. Lett.
98,
201101 (2011),
http://dx.doi.org/10.1063/1.3590716
[29] M. Malinauskas, P. Danilevičius, and S. Juodkazis,
Three-dimensional micro-/nano-structuring via direct write
polymerization with picosecond laser pulses, Opt. Express
19,
5602 (2011),
http://dx.doi.org/10.1364/OE.19.005602
[30] S. Nisara, M.A. Sheikha, L. Lia, and S. Safdarb, Effect of
thermal stresses on chip-free diode laser cutting of glass, Opt.
Laser. Technol.
41(3), 318–327 (2009),
http://dx.doi.org/10.1016/j.optlastec.2008.05.025
[31] K.M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Writing
waveguides in glass with a femtosecond laser, Opt. Lett.
21(21),
1729–1731 (1996),
http://dx.doi.org/10.1364/OL.21.001729
[32] A.M. Streltsov and N.F. Borrelli, Fabrication and analysis
of a directional coupler written in glass by nanojoule
femtosecond laser pulses, Opt. Lett.
26(1), 42–43
(2001),
http://dx.doi.org/10.1364/OL.26.000042
[33] A.M. Streltsov and N.F. Borrelli, Study of
femtosecond-laser-written waveguides in glasses, J. Opt. Soc.
Am. B
19(10), 2496–2504 (2002),
http://dx.doi.org/10.1364/JOSAB.19.002496
[34] T.-C. Poon and T. Kim,
Engineering Optics with MATLAB®
(World Scientific, Singapore, 2006),
http://www.worldscientific.com/worldscibooks/10.1142/6166