Linas Jonušauskas, Edvinas Skliutas, Simas Butkus, and Mangirdas
Malinauskas
Rapid development in 3D
printing technologies promises a cheap and simple yet reliable
way for producing various components and structures for research
in numerous science fields. This work is dedicated to
investigate the possibility to use fused filament fabrication
based 3D printing to fabricate microchannels for microfluidical
applications as well as diverse 3D scaffolds for biomedical
applications. We also examine the possibility to further improve
fabricated structures by employing an ultrafast laser, namely by
laser light filamentation and using direct laser writing.
Results of this study are discussed in detail and outlook for
further work in this field is given.
Darbe pristatoma mikrofluidinių
ir biomedicininių darinių gamyba naudojant trimatį spausdinimą.
Aptariamos galimybės ir dėl šio metodo atsirandantys sunkumai
gaminant nurodytoms sritims skirtus funkcinius mikrodarinius.
Nusakoma, kaip šiuo būdu pagaminti dariniai galėtų būti toliau
tobulinami naudojant nanolitografiją ir lazerinį nanoapdorojimą.
Nors šiuo metu egzistuoja keletas techninių problemų, ribojančių
trimačio spausdinimo ir tiesioginio lazerinio rašymo derinimą
gaminant minėtuosius darinius, daroma išvada, kad nėra jokių
fundamentalių priežasčių, trukdančių išspręsti šias problemas.
References
/ Nuorodos
[1] G.M.
Whitesides, The origins and the future of microfluidics, Nature
447, 435–411 (2006),
http://dx.doi.org/10.1038/nature05058
[2] J.J. Grodzinski, Polymers for tissue engineering, medical
devices, and regenerative medicine. Concise general review of
recent studies, Polymer. Adv. Tech.
17, 395–418 (2006),
http://dx.doi.org/10.1002/pat.729
[3] T. Buckmann, M. Thiel, M. Kadic, R. Schittny, and M.
Wegener, An elastomechanical unfeelability cloak made of
pentamode metamaterials, Nat. Comm.
5, 4130 (2014),
http://dx.doi.org/10.1038/ncomms5130
[4] C.-H. Lin, G.-B. Lee, B.-W. Chang, and G.-L. Chang, A new
fabrication process for ultrathick microfluidic microstructures
utilizing SU-8 photoresist, J. Micromech. Microeng.
12,
590–597 (2002),
http://dx.doi.org/10.1088/0960-1317/12/5/312
[5] Y. Xia and G.M. Whitesides, Soft lithography, Annu. Rev.
Mater. Sci.
28, 153–184 (1998),
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
[6] M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas,
Two-photon polymerization for fabrication of three-dimensional
micro- and nanostructures over a large area, Proc. SPIE
7204,
72040C–1 (2009),
http://dx.doi.org/10.1117/12.811125
[7] E. Sachs, M. Cima, J. Cornie, D. Band, J. Bredt, A.
Curodeau, T. Fan, S. Khanuja, A. Lauder, J. Lee, and S.
Michaels, Three-dimensional printing: the physics and
implications of additive manufacturing, CIRP Ann. Manuf. Tech.
42(1),
257–260 (1993),
http://dx.doi.org/10.1016/S0007-8506(07)62438-X
[8] M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E.
Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A.
Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, 3D
microporous scaffolds manufactured via combination of fused
filament fabrication and direct laser writing ablation,
Micromachines
5(12), 839–858 (2014),
http://dx.doi.org/10.3390/mi5040839
[9] K. Sugioka and Y. Cheng, Femtosecond laser three-dimensional
micro- and nanofabrication, Appl. Phys. Rev.
1, 041303
(2014),
http://dx.doi.org/10.1063/1.4904320
[10]
https://ultimaker.com/
(2015)
[11] V. Melissinaki, A.A. Gill, I. Ortega, M. Vamvakaki, A.
Ranella, J.W. Haycock, C. Fotakis, M. Farsari, and F.
Claeyssens, Direct laser writing of 3D scaffolds for neural
tissue engineering applications, Biofabrication
3,
045005 (2011),
http://dx.doi.org/10.1088/1758-5082/3/4/045005
[12] J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov,
A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A.
Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis,
Preclinical study of sz2080 material 3D microstructured
scaffolds for cartilage tissue engineering made by femtosecond
direct laser writing lithography, Biofabrication
7(1),
015015 (2015),
http://dx.doi.org/10.1088/1758-5090/7/1/015015
[13] S. Butkus, E. Gaižauskas, D. Paipulas, Ž. Viburys, D.
Kaškelytė, M. Barkauskas, A. Alesenkov, and V. Sirutkaitis,
Rapid microfabrication of transparent materials using filamented
femtosecond laser pulses, Appl. Phys. A
114(1), 81–90
(2013),
http://dx.doi.org/10.1007/s00339-013-8108-2
[14] W. Haske, V.W. Chem, J.M. Hales, W. Dong, S. Barlow, S.R.
Marder, and J.W. Perry, 65 nm feature sizes using visible
wavelength 3-D multiphoton lithography, Opt. Express
15(6),
3426–3436 (2007),
http://dx.doi.org/10.1364/OE.15.003426
[15] A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B.
MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki,
M. Farsari, and C. Fotakis, Ultralow shrinkage hybrid
photosensitive material for two-photon polymerization
microfabrication, ACS Nano
2(11), 2257–2262 (2008),
http://dx.doi.org/10.1021/nn800451w
[16] Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H.
Misawa, Femtosecond laser photopolymerization of photonic and
free-movable microstructures in sol–gel hybrid resist, Proc.
SPIE
7591, 75910K (2010),
http://dx.doi.org/10.1117/12.840657
[17] P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas,
R. Širmenis, D. Baltriukienė, V. Bukelskienė, R. Gadonas, V.
Sirvydis, A. Piskarskas, and M. Malinauskas, Laser 3D
micro/nanofabrication of polymers for tissue engineering
applications, Opt. Laser Tech.
45, 518–524 (2013),
http://dx.doi.org/10.1016/j.optlastec.2012.05.038
[18] P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas,
R. Jarasienė, R. Širmenis, D. Baltriukienė, V. Bukelskienė, R.
Gadonas, and M. Malinauskas, Micro-structured polymer scaffolds
fabricated by direct laser writing for tissue engineering, J.
Biomed. Opt.
17(8), 081405 (2012),
http://dx.doi.org/10.1117/1.JBO.17.8.081405
[19] A. Žukauskas, G. Batavičiūtė, M. Ščiuka, T. Jukna, A.
Melninkaitis, and M. Malinauskas, Characterization of
photopolymers used in laser 3D micro/nanolithography by means of
laser-induced damage threshold (LIDT), Opt. Mater. Express
4(8),
1601–1616 (2014),
http://dx.doi.org/10.1364/OME.4.001601
[20] R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis,
Nano-groove and 3D fabrication by controlled avalanche using
femtosecond laser pulses, Opt. Mater. Express
3(10),
1674–1686 (2013),
http://dx.doi.org/10.1364/OME.3.001674
[21] S. Rekštytė, L. Jonušauskas, A. Žukauskas, G. Gervinskas,
M. Malinauskas, and S. Juodkazis, Three-dimensional
nano-structuring of polymer materials by controlled avalanche
using femtosecond laser pulses, Proc. SPIE
8972, 89721O
(2014),
http://dx.doi.org/10.1117/12.2040971
[22] L. Jonušauskas, S. Rekštytė, and M. Malinauskas,
Augmentation of direct laser writing fabrication throughput for
three-dimensional structures by varying focusing conditions,
Opt. Eng.
53(12), 125102 (2014),
http://dx.doi.org/10.1117/1.OE.53.12.125102
[23] M. Malinauskas, E. Skliutas, A. Šešok, D. Mizeras, L.
Jonušauskas, and A. Piskarskas, Tailoring bulk mechanical
properties of 3d printed objects of polylactic acid varying
internal micro-architecture, Proc. SPIE
9505, 95050P
(2015),
http://dx.doi.org/10.1117/12.2178515
[24] E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas,
and G. Račiukaitis, Fabrication of periodic micro-structures by
holographic lithography, Lith. J. Phys.
53(4), 227–237
(2013),
http://dx.doi.org/10.3952/physics.v53i4.2765
[25] Y. Liu, P.L. Nolte, and D. Nolte, General 3D microporous
structures fabricated with two-photon laser machining, Proc.
SPIE
6886, 68860Y (2008),
http://dx.doi.org/10.1117/12.760313
[26] A. Ovsianikov, M. Gruene, M. Pflaum, L. Koch, F. Maiorana,
M. Wilhelmi, A. Haverich, and B. Chichkov, Laser printing of
cells into 3D scaffolds, Biofabrication
2(1), 014104
(2010),
http://dx.doi.org/10.1088/1758-5082/2/1/014104
[27] P. Abgrall and A.-M. Gue, Lab-on-chip technologies: making
a microfluidic network and coupling it into a complete
microsystem: a review, J. Micromech. Microeng.
17,
R15–49 (2007),
http://dx.doi.org/10.1088/0960-1317/17/5/R01
[28] R.B. Fair, Digital microfluidics: is a true lab-on-achip
possible? Microfluid. Nanofluid.
3(3), 245–281 (2007),
http://dx.doi.org/10.1007/s10404-007-0161-8
[29] V. Fleury, Biofluidics of animal morphogenesis: does
evolution follow stream lines? Comput. Meth. Biomech. Biomed.
Eng.
15(S1), 17–18 (2012),
http://dx.doi.org/10.1080/10255842.2012.713596
[30] M.D. Turner, M. Saba, Q. Zhang, B.P. Cumming, G.E.
Schroder-Turk, and M. Gu, Miniature chiral beamsplitter based on
gyroid photonic crystals, Nature Photon.
7, 801–805
(2013),
http://dx.doi.org/10.1038/nphoton.2013.233
[31] A. Žukauskas, M. Malinauskas, and E. Brasselet, Monolithic
generators of pseudo-nondiffracting optical vortex beams at the
microscale, Appl. Phys. Lett.
103(18), 181122 (2013),
http://dx.doi.org/10.1063/1.4828662
[32] T. Ikegami, R. Ozawa, M.P. Stocker, K. Monaco, J.T.
Fourkas, and S. Maruo, Development of optically-driven metallic
microrotors using two-photon microfabrication, J. Laser
Micro/Nanoeng.
8(1), 6–10 (2013),
http://dx.doi.org/10.2961/jlmn.2013.01.0002
[33] P. Sajeesh and A.K. Sen, Particle separation and sorting in
microfluidic devices: a review, Microfluid. Nanofluid.
17,
1–52 (2014),
http://dx.doi.org/10.1007/s10404-013-1291-9
[34] M. Markovic, J. Van Hoorick, K. Hölzl, M.T. Tromayer, P.
Gruber, S. Nürnberger, P. Dubruel, S. Van Vlierberghe, R. Liska,
and A. Ovsianikov, Hybrid tissue engineering scaffolds by
combination of 3D printing and cell photoencapsulation, J.
Nanotech. Eng. Med.
6(2), 021001 (2015),
http://dx.doi.org/10.1115/1.4031466
[35] Y. Wang, H.-J. Kim, G.V.-Novakovic, and D.L. Kaplan, Stem
cell-based tissue engineering with silk biomaterials,
Biomaterials
27(36), 6064–6082 (2006),
http://dx.doi.org/10.1016/j.biomaterials.2006.07.008