[PDF]    http://dx.doi.org/10.3952/physics.v55i3.3151

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 227–236 (2015)


CUSTOM ON DEMAND 3D PRINTING OF FUNCTIONAL MICROSTRUCTURES
Linas Jonušauskas, Edvinas Skliutas, Simas Butkus, and Mangirdas Malinauskas
Laser Research Center, Department of Quantum Electronics, Faculty of Physics, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: linas.jon@gmail.com

Received 22 May 2015; accepted 29 September 2015

Rapid development in 3D printing technologies promises a cheap and simple yet reliable way for producing various components and structures for research in numerous science fields. This work is dedicated to investigate the possibility to use fused filament fabrication based 3D printing to fabricate microchannels for microfluidical applications as well as diverse 3D scaffolds for biomedical applications. We also examine the possibility to further improve fabricated structures by employing an ultrafast laser, namely by laser light filamentation and using direct laser writing. Results of this study are discussed in detail and outlook for further work in this field is given.
Keywords: 3D printing, microfluidics, lab on chip, regenerative medicine, laser
PACS: 81.16.Nd, 81.05.Mh, 42.62.Cf


LANKSTUS TRIMATIS UNIKALIŲ FUNKCINIŲ MIKRODARINIŲ SPAUSDINIMAS
Linas Jonušauskas, Edvinas Skliutas, Simas Butkus, Mangirdas Malinauskas
Vilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva

Darbe pristatoma mikrofluidinių ir biomedicininių darinių gamyba naudojant trimatį spausdinimą. Aptariamos galimybės ir dėl šio metodo atsirandantys sunkumai gaminant nurodytoms sritims skirtus funkcinius mikrodarinius. Nusakoma, kaip šiuo būdu pagaminti dariniai galėtų būti toliau tobulinami naudojant nanolitografiją ir lazerinį nanoapdorojimą. Nors šiuo metu egzistuoja keletas techninių problemų, ribojančių trimačio spausdinimo ir tiesioginio lazerinio rašymo derinimą gaminant minėtuosius darinius, daroma išvada, kad nėra jokių fundamentalių priežasčių, trukdančių išspręsti šias problemas.


References / Nuorodos

[1] G.M. Whitesides, The origins and the future of microfluidics, Nature 447, 435–411 (2006),
http://dx.doi.org/10.1038/nature05058
[2] J.J. Grodzinski, Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies, Polymer. Adv. Tech. 17, 395–418 (2006),
http://dx.doi.org/10.1002/pat.729
[3] T. Buckmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, An elastomechanical unfeelability cloak made of pentamode metamaterials, Nat. Comm. 5, 4130 (2014),
http://dx.doi.org/10.1038/ncomms5130
[4] C.-H. Lin, G.-B. Lee, B.-W. Chang, and G.-L. Chang, A new fabrication process for ultrathick microfluidic microstructures utilizing SU-8 photoresist, J. Micromech. Microeng. 12, 590–597 (2002),
http://dx.doi.org/10.1088/0960-1317/12/5/312
[5] Y. Xia and G.M. Whitesides, Soft lithography, Annu. Rev. Mater. Sci. 28, 153–184 (1998),
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
[6] M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, Two-photon polymerization for fabrication of three-dimensional micro- and nanostructures over a large area, Proc. SPIE 7204, 72040C–1 (2009),
http://dx.doi.org/10.1117/12.811125
[7] E. Sachs, M. Cima, J. Cornie, D. Band, J. Bredt, A. Curodeau, T. Fan, S. Khanuja, A. Lauder, J. Lee, and S. Michaels, Three-dimensional printing: the physics and implications of additive manufacturing, CIRP Ann. Manuf. Tech. 42(1), 257–260 (1993),
http://dx.doi.org/10.1016/S0007-8506(07)62438-X
[8] M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, 3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation, Micromachines 5(12), 839–858 (2014),
http://dx.doi.org/10.3390/mi5040839
[9] K. Sugioka and Y. Cheng, Femtosecond laser three-dimensional micro- and nanofabrication, Appl. Phys. Rev. 1, 041303 (2014),
http://dx.doi.org/10.1063/1.4904320
[10] https://ultimaker.com/ (2015)
[11] V. Melissinaki, A.A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J.W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, Direct laser writing of 3D scaffolds for neural tissue engineering applications, Biofabrication 3, 045005 (2011),
http://dx.doi.org/10.1088/1758-5082/3/4/045005
[12] J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, Preclinical study of sz2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography, Biofabrication 7(1), 015015 (2015),
http://dx.doi.org/10.1088/1758-5090/7/1/015015
[13] S. Butkus, E. Gaižauskas, D. Paipulas, Ž. Viburys, D. Kaškelytė, M. Barkauskas, A. Alesenkov, and V. Sirutkaitis, Rapid microfabrication of transparent materials using filamented femtosecond laser pulses, Appl. Phys. A 114(1), 81–90 (2013),
http://dx.doi.org/10.1007/s00339-013-8108-2
[14] W. Haske, V.W. Chem, J.M. Hales, W. Dong, S. Barlow, S.R. Marder, and J.W. Perry, 65 nm feature sizes using visible wavelength 3-D multiphoton lithography, Opt. Express 15(6), 3426–3436 (2007),
http://dx.doi.org/10.1364/OE.15.003426
[15] A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, Ultralow shrinkage hybrid photosensitive material for two-photon polymerization microfabrication, ACS Nano 2(11), 2257–2262 (2008),
http://dx.doi.org/10.1021/nn800451w
[16] Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, Femtosecond laser photopolymerization of photonic and free-movable microstructures in sol–gel hybrid resist, Proc. SPIE 7591, 75910K (2010),
http://dx.doi.org/10.1117/12.840657
[17] P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Širmenis, D. Baltriukienė, V. Bukelskienė, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, Laser 3D micro/nanofabrication of polymers for tissue engineering applications, Opt. Laser Tech. 45, 518–524 (2013),
http://dx.doi.org/10.1016/j.optlastec.2012.05.038
[18] P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Jarasienė, R. Širmenis, D. Baltriukienė, V. Bukelskienė, R. Gadonas, and M. Malinauskas, Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering, J. Biomed. Opt. 17(8), 081405 (2012),
http://dx.doi.org/10.1117/1.JBO.17.8.081405
[19] A. Žukauskas, G. Batavičiūtė, M. Ščiuka, T. Jukna, A. Melninkaitis, and M. Malinauskas, Characterization of photopolymers used in laser 3D micro/nanolithography by means of laser-induced damage threshold (LIDT), Opt. Mater. Express 4(8), 1601–1616 (2014),
http://dx.doi.org/10.1364/OME.4.001601
[20] R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses, Opt. Mater. Express 3(10), 1674–1686 (2013),
http://dx.doi.org/10.1364/OME.3.001674
[21] S. Rekštytė, L. Jonušauskas, A. Žukauskas, G. Gervinskas, M. Malinauskas, and S. Juodkazis, Three-dimensional nano-structuring of polymer materials by controlled avalanche using femtosecond laser pulses, Proc. SPIE 8972, 89721O (2014),
http://dx.doi.org/10.1117/12.2040971
[22] L. Jonušauskas, S. Rekštytė, and M. Malinauskas, Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions, Opt. Eng. 53(12), 125102 (2014),
http://dx.doi.org/10.1117/1.OE.53.12.125102
[23] M. Malinauskas, E. Skliutas, A. Šešok, D. Mizeras, L. Jonušauskas, and A. Piskarskas, Tailoring bulk mechanical properties of 3d printed objects of polylactic acid varying internal micro-architecture, Proc. SPIE 9505, 95050P (2015),
http://dx.doi.org/10.1117/12.2178515
[24] E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Račiukaitis, Fabrication of periodic micro-structures by holographic lithography, Lith. J. Phys. 53(4), 227–237 (2013),
http://dx.doi.org/10.3952/physics.v53i4.2765
[25] Y. Liu, P.L. Nolte, and D. Nolte, General 3D microporous structures fabricated with two-photon laser machining, Proc. SPIE 6886, 68860Y (2008),
http://dx.doi.org/10.1117/12.760313
[26] A. Ovsianikov, M. Gruene, M. Pflaum, L. Koch, F. Maiorana, M. Wilhelmi, A. Haverich, and B. Chichkov, Laser printing of cells into 3D scaffolds, Biofabrication 2(1), 014104 (2010),
http://dx.doi.org/10.1088/1758-5082/2/1/014104
[27] P. Abgrall and A.-M. Gue, Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem: a review, J. Micromech. Microeng. 17, R15–49 (2007),
http://dx.doi.org/10.1088/0960-1317/17/5/R01
[28] R.B. Fair, Digital microfluidics: is a true lab-on-achip possible? Microfluid. Nanofluid. 3(3), 245–281 (2007),
http://dx.doi.org/10.1007/s10404-007-0161-8
[29] V. Fleury, Biofluidics of animal morphogenesis: does evolution follow stream lines? Comput. Meth. Biomech. Biomed. Eng. 15(S1), 17–18 (2012),
http://dx.doi.org/10.1080/10255842.2012.713596
[30] M.D. Turner, M. Saba, Q. Zhang, B.P. Cumming, G.E. Schroder-Turk, and M. Gu, Miniature chiral beamsplitter based on gyroid photonic crystals, Nature Photon. 7, 801–805 (2013),
http://dx.doi.org/10.1038/nphoton.2013.233
[31] A. Žukauskas, M. Malinauskas, and E. Brasselet, Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale, Appl. Phys. Lett. 103(18), 181122 (2013),
http://dx.doi.org/10.1063/1.4828662
[32] T. Ikegami, R. Ozawa, M.P. Stocker, K. Monaco, J.T. Fourkas, and S. Maruo, Development of optically-driven metallic microrotors using two-photon microfabrication, J. Laser Micro/Nanoeng. 8(1), 6–10 (2013),
http://dx.doi.org/10.2961/jlmn.2013.01.0002
[33] P. Sajeesh and A.K. Sen, Particle separation and sorting in microfluidic devices: a review, Microfluid. Nanofluid. 17, 1–52 (2014),
http://dx.doi.org/10.1007/s10404-013-1291-9
[34] M. Markovic, J. Van Hoorick, K. Hölzl, M.T. Tromayer, P. Gruber, S. Nürnberger, P. Dubruel, S. Van Vlierberghe, R. Liska, and A. Ovsianikov, Hybrid tissue engineering scaffolds by combination of 3D printing and cell photoencapsulation, J. Nanotech. Eng. Med. 6(2), 021001 (2015),
http://dx.doi.org/10.1115/1.4031466
[35] Y. Wang, H.-J. Kim, G.V.-Novakovic, and D.L. Kaplan, Stem cell-based tissue engineering with silk biomaterials, Biomaterials 27(36), 6064–6082 (2006),
http://dx.doi.org/10.1016/j.biomaterials.2006.07.008