Brian K. Ridley
A brief summary is made of the models used
to describe the interaction between electrons and polar
optical phonons in nanostructures. Simpler models are compared
with the model that describes optical modes that satisfy both
mechanical and electrical boundary conditions. Satisfaction of
these boundary conditions requires modes to be a linear
combination (LC) of longitudinal (LO), transverse (TO) and
interface (IF) modes. The role of lattice dispersion turns out
to be crucial. If accuracy is not essential, the simple models
can provide adequate results, provided that coupled-mode and
hot-phonon effects are absent.
Keywords:
electron–phonon interactions, electronic transport,
nanostructures
PACS: 72.10.Di, 73.63.-b
References
/
Nuorodos
[1] M.G. Burt, An exact
formulation of the envelope function method for the
determination of electronic states in semiconductor
microstructures, Semicond. Sci. Technol.
3, 739 (1988),
http://dx.doi.org/10.1088/0268-1242/3/8/003
[2] M.G. Burt, The justification for applying the effective-mass
approximation to microstructures, J. Phys. Condens. Matter.
4,
6651 (1992),
http://dx.doi.org/10.1088/0953-8984/4/32/003
[3] B.A. Foreman and B.K. Ridley, in:
Proc. ICPS24 CDROM
Section V-E3 (1999),
http://dx.doi.org/10.1142/3915
[4] B.K. Ridley,
Electrons and Phonons in Semiconductor
Multilayers, 2nd ed. (Cambridge University Press, 2009),
http://dx.doi.org/10.1017/CBO9780511581496
[5] F.A. Riddoch and B.K. Ridley, On the scattering of electrons
by polar optical phonons in quasi-2D quantum wells, J. Phys. C
16,
6971 (1983),
http://dx.doi.org/10.1088/0022-3719/16/36/012
[6] R. Fuchs and K.L. Kliewer, Optical modes of vibration in an
ionic crystal slab, Phys. Rev.
140, A2076 (1965),
http://dx.doi.org/10.1103/PhysRev.140.A2076
[7] M. Babiker, Longitudinal polar optical modes in
semiconductor quantum wells, J. Phys. C
19, 683 (1986),
http://dx.doi.org/10.1088/0022-3719/19/5/008
[8] J.E. Zucker, A. Pinczuk, D.S. Chemla, A. Gossard, and W.
Wiegman, Optical vibrational modes and electron-phonon
interaction in GaAs quantum wells, Phys. Rev. Lett.
53,
1280 (1984),
http://dx.doi.org/10.1103/PhysRevLett.53.1280
[9] H. Akero and T. Ando, Envelope-function formalism for
phonons in heterostructures, Phys. Rev. B
40, 2914
(1989),
http://dx.doi.org/10.1103/PhysRevB.40.2914
[10] C. Trallero-Giner, F. García-Moliner, V.R. Velasco, and M.
Cardona, Analysis of the phenomenological models for long
wavelength polar optical modes in semiconductor layered systems,
Phys. Rev. B
45, 11944 (1992),
http://dx.doi.org/10.1103/PhysRevB.45.11944
[11] K.J. Nash, Electron-phonon interactions and lattice
dynamics of optic phonons in semiconductor heterostructures,
Phys. Rev. B
46, 7723 (1992),
http://dx.doi.org/10.1103/PhysRevB.46.7723
[12] B.K. Ridley, Continuum theory of optical phonon hybrids and
their interaction with electrons in a quantum well, Proc. SPIE
1675,
492 (1992),
http://dx.doi.org/10.1117/12.137633
[13] B.K. Ridley, Electron-hybridon interaction in a quantum
well, Phys. Rev. B
47, 4592 (1993),
http://dx.doi.org/10.1103/PhysRevB.47.4592
[14] M.P. Chamberlain, M. Cardona, and B.K. Ridley, Optical
modes in GaAs/AlAs superlattices, Phys. Rev. B
48, 14356
(1993),
http://dx.doi.org/10.1103/PhysRevB.48.14356
[15] J. Požela, G. Butkus, and V. Jucienė, Electron-optical
phonon scattering rates in 2D structures: effects of independent
electron and phonon confinement, Semicond. Sci. Technol.
9,
1480 (1994),
http://dx.doi.org/10.1088/0268-1242/9/8/006
[16] J. Požela, V. Jucienė, and K. Požela, Confined
electron-optical phonon scattering rates in 2D structures
containing electron and phonon walls, Semicond. Sci. Technol.
10,
1076 (1995),
http://dx.doi.org/10.1088/0268-1242/10/8/004