[PDF]    http://dx.doi.org/10.3952/physics.v55i4.3220

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 249254 (2015)


QUANTUM AND TRANSPORT SCATTERING TIMES IN AlGaAs/InGaAs NANOHETEROSTRUCTURES WITH AlAs INSERTS IN THE SPACER LAYER
Galib B. Galieva, Ivan S. Vasil'evskiib, Evgenyi A. Klimova, Dmitry S. Ponomareva, Rustam A. Khabibullina, Vladimir A. Kulbachinskiic, Dmitry V. Gromovb, and Petr P. Maltseva
aInstitute of Ultra High Frequency Semiconductor Electronics of Russian Academy of Sciences, Nagornyi pr. 7, 117105 Moscow, Russia
E-mail: ponomarev@isvch.ru
bMoscow Engineering Physics Institute (MEPhI) – National Research Nuclear University, Kashirskoe sh. 31, 115409 Moscow, Russia
cM.V. Lomonosov Moscow State University, Moscow, GSP-1, 119991 Russia

Received 22 May 2015; accepted 29 September 2015

The influence of nano-sized AlAs inserts in the spacer layer AlGaAs on scattering mechanisms of AlGaAs/InGaAs nanoheterostructures has been considered. It was shown that the introduction of AlAs lead to mobility enhancement up to 20%. The ratio of transport-to-quantum scattering times revealed that in the case of the spacer with AlAs inserts the scattering on ionized Si-donors is strongly decreased in comparison to the spacer without AlAs.
Keywords: AlAs inserts, quantum and transport scattering times, scattering mechanisms, nanoheterostructure
PACS: 68.55.ag, 68.65.Fg, 72.80.Ey

KVANTINĖS IR ĮPRASTINĖS SKLAIDOS TRUKMĖS AlGaAs/InGaAs NANOHETERODARINIUOSE SU AlAs INTARPAIS BUFERINIAME SLUOKSNYJE

Galib B. Galieva, Ivan S. Vasil'evskiib, Evgenyi A. Klimova, Dmitry S. Ponomareva, Rustam A. Khabibullina, Vladimir A. Kulbachinskiic, Dmitry V. Gromovb, Petr P. Maltseva
aRusijos mokslų akademijos Superaukšto dažnio puslaidininkių elektronikos institutas, Maskva, Rusija
bNacionalinio branduolinių mokslinių tyrimų universiteto Maskvos inžinerinės fizikos institutas, Maskva, Rusija
cValstybinis Maskvos M.V. Lomonosovo universitetas, Maskva, Rusija

References / Nuorodos

[1] J. Požela, K. Požela, and V. Jucienė, Enhancement of electron drift velocity in a quantum well by confinement of polar optical phonons, Phys. Status Solidi 4(2), 632–634 (2007),
http://dx.doi. org/10.1002/pssc.200673318
[2] K. Požela, Electron nonelastic scattering by confined and interface polar optical phonons in a modulation-doped AlGaAs/GaAs/AlGaAs quantum well, Semicond. 35(11), 1305–1308 (2001),
http://dx.doi.org/10.1134/1.1418076
[3] J. Požela, K. Požela, V. Jucienė, A. Sužiedėlis, N. Žurauskienė, and A.S. Shkolnik, Electron transport in modulated-doped InAlAs/InGaAs/InAlAs and AlGaAs/InGaAs/AlGaAs heterostructures, Lithuan. J. Phys. 51(4), 270–275 (2011),
http://dx.doi.org/10.3952/lithjphys.51401
[4] V.A. Kulbachinskii, N.A. Yuzeeva, G.B. Galiev, E.A. Klimov, I.S. Vasilevskii, R.A. Khabibullin, and D.S. Ponomarev, Electron effective masses in an InGaAs quantum well with InAs and GaAs inserts, Semicond. Sci. Tech. 27, 035021 (2012),
http://dx.doi.org/10.1088/0268-1242/27/3/035021
[5] J. Požela, K. Požela, and V. Jucienė, Electron mobility and electron scattering by polar optical phonons in heterostructure quantum wells, Semicond. 34(9), 1011–1015 (2000),
http://dx.doi.org/10.1134/1.1309408
[6] J. Požela, K. Požela, and V. Jucienė, Scattering of electrons by confined interface polar optical phonons in a double-barrier heterostructure, Semicond. 41(9), 1074–1079 (2007),
http://dx.doi.org/10.1134/S1063782607090126
[7] P. Lorenzini, Z. Bougrioua, A. Tiberj, R. Tauk, M. Azize, M. Sakowicz, K. Karpierz, and W. Knap, Quantum and transport lifetimes of two-dimensional electrons gas in AlGaN/GaN heterostructures, Appl. Phys. Lett. 87, 232107 (2005),
http://dx.doi.org/10.1063/1.2140880
[8] D. Schneider, L. Elbrecht, J. Creutzburg, A. Schlachetzki, and G. Zwinge, In-plane effective mass of electrons in InGaAs/InP quantum wells, J. Appl. Phys. 77, 2828 (1995),
http://dx.doi.org/10.1063/1.358694
[9] L. Hsu and W. Walukiewicz, Transport-to-quantum lifetime ratios in AlGaN/GaN heterostructures, Appl. Phys. Lett. 80, 2508–2510 (2002),
http://dx.doi.org/10.1063/1.1468260
[10] T. Ando, A.B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54, 437 (1982),
http://dx.doi.org/10.1103/RevModPhys.54.437
[11] D. Sarma and F. Stern, Single-particle relaxation time versus scattering time in an impure electron gas, Phys. Rev. B. 32, 8442(R),
http://dx.doi.org/10.1103/PhysRevB.32.8442
[12] M. McElhinney, B. Vögele, M.C. Holland, C.R. Stanley, E. Skuras, A.R. Long, and E.A. Johnson, 1.2 K Shubnikov–de Haas measurements and self-consistent calculation of silicon spreading in δ- and slab-doped In0.53Ga0.47As grown by molecular beam epitaxy, Appl. Phys. Lett. 68, 940 (1996),
http://dx.doi.org/10.1063/1.116105
[13] Y.M. Zhou, L.Y. Shang, G. Yu, K.H. Gao, W.Z. Zhou, T. Lin, S.L. Guo, J.H. Chu, N. Dai, and D.G. Austing, Transport properties of a spin-split two-dimensional electron gas in an In0.53Ga0.47As/InP quantum well structure, Appl. Phys. Lett. 106, 073722 (2009),
http://dx.doi.org/10.1063/1.3244613
[14] M. Sakowicz, J. Lusakowski, K. Karpierz, M. Grynberg, and B. Majkusiak, Transport and quantum scattering time in field-effect transistors, Appl. Phys. Lett. 90, 172104 (2007),
http://dx.doi.org/10.1063/1.2731713
[15] P.T. Coleridge, Small-angle scattering in two-dimensional electron gas, Phys. Rev. B 44(8), 3793–3801 (1991),
http://dx.doi.org/10.1103/PhysRevB.44.3793
[16] R.A. Khabibullin, G.B. Galiev, E.A. Klimov, D.S. Ponomarev, I.S. Vasilevskii, V.A. Kulbachinskii, P.Yu. Bokov, L.P. Avakyants, A.V. Chervyakov, and P.P. Maltseva, Electrical and optical properties of near-surface AlGaAs/InGaAs/AlGaAs quantum wells with different quantum-well depths, Semicond. 47(9), 1203–1208 (2013),
http://dx.doi.org/10.1134/S106378261309008X
[17] R.A. Khabibullin, I.S. Vasilevskii, D.S. Ponomarev, G.B. Galiev, E.A. Klimov, L.P. Avakyants, P.Yu. Bokov, and A.V. Chervyakov, the built-in electric field in PHEMT heterostructures with near-surface quantum wells AlxGa1–xAs/InyGa1–yAs/GaAs, J. Phys. Conf. Ser. 345, 012015 (2012),
http://dx.doi.org/10.1088/1742-6596/345/1/012015
[18] S.B. Lisesivdin, H. Altuntas, A. Yildiz, M. Kasapa, E. Ozbay, and S. Ozcelik, DX-center energy calculation with quantitative mobility spectrum analysis in n-AlGaAs/GaAs structures with low Al content, Superlatt. Microstructr. 45(6), 604–611 (2009),
http://dx.doi.org/10.1016/j.spmi.2009.02.009
[19] D.S. Ponomarev, I.S. Vasilevskii, G.B. Galiev, E.A. Klimov, R.A. Khabibullin, V.A. Kulbachinskii, and N.A. Uzeeva, Electron mobility and effective mass in composite InGaAs quantum wells with InAs and GaAs nanoinserts, Semicond. 46(4), 484–490 (2012),
http://dx.doi.org/10.1134/S1063782612040173
[20] W. Nakwaski, Effective masses of electrons and heavy holes in GaAs, InAs, AlAs and their ternary compounds, Phys. B 210, 1–25 (1995),
http://dx.doi.org/10.1016/0921-4526(94)00921-H
[21] I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys, J. Appl. Phys. 89(11), 5815–5875 (2001),
http://dx.doi.org/10.1063/1.1368156
[22] R.A. Khabibullin, I.S. Vasilevskii, G.B. Galiev, E.A. Klimov, D.S. Ponomarev, V.P. Gladkov, V.A. Kulbachinskii, A.N. Klochkov, and N.A. Uzeeva, Effect of the built-in electric field on optical and electrical properties of AlGaAs/InGaAs/GaAs P-HEMT nanoheterostructures, Semicond. 45(5), 657–662 (2011),
http://dx.doi.org/10.1134/S1063782611050162
[23] E. Diez, Y.P. Chen, S. Avesque, M. Hilke, E. Peled, D. Shahar, J.M. Cerver, D.L. Sivco, and A.Y. Cho, Two-dimensional electron gas in InGaAs/InAlAs quantum wells, Appl. Phys. Lett. 88, 052107 (2006),
http://dx.doi.org/10.1063/1.2168666