Panaudojant hidrodinaminį modelį
bei modeliavimą Monte Karlo metodu, ištirtos optiškai sukurtų
elektronų ir skylių plazmos osciliacijos bekontakčiuose
terahercinės spinduliuotės emiteriuose. Gautos ryškiai
išreikštos plazminės osciliacijos n-GaAs emiteryje, kuriame
osciliacijos yra inicijuotos paviršiniu elektriniu lauku.
Plazminės osciliacijos taip pat yra aptiktos n-InAs
emiteryje, kuriame osciliacijos yra sukuriamos foto-Demberio
efektu.
References
/
Nuorodos
[1] J. Pozhela,
Plasma
and Current Instabilities in Semiconductors (Pergamon,
Oxford, 1981),
http://store.elsevier.com/Plasma-and-Current-Instabilities-in-Semiconductors/Juras-Pozhela/isbn-9781483189383/
[2] Yu. Pozhela and A. Reklaitis, Instability of hot electrons
in two-valley semiconductors, JETP Lett.
31(12), 673–676
(1980),
http://www.jetpLetters.ac.ru/ps/1360/article_20546.pdf
[3] V. Gružinskis, R. Mickevičius, J. Požela, and A. Reklaitis,
Collective electron interaction in double-barrier GaAs
structures, Europhys. Lett.
5(4), 339–341 (1988),
http://dx.doi.org/10.1209/0295-5075/5/4/010
[4] J. Požela, E. Širmulis, K. Požela, A. Šilėnas, and V.
Jucienė, SiC and GaAs emitters as selective terahertz radiation
sources, Lith. J. Phys.
53(3), 163–167 (2013),
http://dx.doi.org/10.3952/lithjphys.53306
[5] K. Požela, E. Širmulis, I. Kašalynas, A. Šilėnas, J. Požela,
and V. Jucienė, Selective thermal terahertz emission from GaAs
and AlGaAs, Appl. Phys. Lett.
105(9), 091601 (2014),
http://dx.doi.org/10.1063/1.4894539
[6] S. Preu, G.H. Döhler, S. Malzer, L.J. Wang, and A.C.
Gossard, Tunable, continuous-wave terahertz photomixer sources
and applications, J. Appl. Phys.
109(6), 061301 (2011),
http://dx.doi.org/10.1063/1.3552291
[7] G. Seniutinas, G. Gervinskas, E. Constable, A. Krotkus, G.
Molis, G. Valušis, R.A. Lewis, and S. Juodkazis, THz photomixer
with milled nanoelectrodes on LT-GaAs, Appl. Phys. A
117(2),
439–444 (2014),
http://dx.doi.org/10.1007/s00339-014-8685-8
[8] A. Krotkus, Semiconductors for terahertz photonics
applications, J. Phys. D
43(27), 273001 (2010),
http://dx.doi.org/10.1088/0022-3727/43/27/273001
[9] R.A. Lewis, A review of terahertz sources, J. Phys. D
47(37),
374001 (2014),
http://dx.doi.org/10.1088/0022-3727/47/37/374001
[10] V. Apostolopoulos and M.E. Barnes, THz emitters based on
the photo-Dember effect, J. Phys. D
47(37), 374002
(2014),
http://dx.doi.org/10.1088/0022-3727/47/37/374002
[11] M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, Polarity
reversal of terahertz waves radiated from semi-insulating InP
surfaces induced by temperature, Phys. Rev.
67(19),
195308 (2003),
http://dx.doi.org/10.1103/PhysRevB.67.195308
[12] J.N. Heyman, N. Coates, A. Reinhardt, and G. Strasser,
Diffusion and drift in terahertz emission at GaAs surfaces,
Appl. Phys. Lett.
83(26), 5476–5478 (2003),
http://dx.doi.org/10.1063/1.1636821
[13] S. Winnerl, S. Sinning, T. Dekorsy, and M. Helm, Increased
terahertz emission from thermally treated GaSb, Appl. Phys.
Lett.
85(15), 3092–3094 (2004),
http://dx.doi.org/10.1063/1.1805197
[14] Y. Shi, X. Xu, Y. Yang, W. Yan, S. Ma, and L. Wang,
Anomalous enhancement of terahertz radiation from
semi-insulating GaAs surfaces induced by optical pump, Appl.
Phys. Lett.
89(8), 081129 (2006),
http://dx.doi.org/10.1063/1.2338805
[15] W. Sha, A.L. Smirl, and W.F. Tseng, Coherent plasma
oscillations in bulk semiconductors, Phys. Rev. Lett.
74(21),
4273–4276 (1995),
http://dx.doi.org/10.1103/PhysRevLett.74.4273
[16] R. Kersting, K. Unterrainer, G. Strasser, H.F. Kauffmann,
and E. Gornik, Few-cycle THz emission from cold plasma
oscillations, Phys. Rev. Lett.
79(16), 3038–3041 (1997),
http://dx.doi.org/10.1103/PhysRevLett.79.3038
[17] W. Fischler, P. Buchberger, R.A. Höpfel, and G. Zandler,
Ultrafast reflectivity changes in photoexcited GaAs Schottky
diodes, Appl. Phys. Lett.
68(20), 2778–2780 (1996),
http://dx.doi.org/10.1063/1.116604
[18] A. Reklaitis, Monte Carlo analysis of terahertz
oscillations of photoexcited carriers in GaAs
p-i-n
structures, Phys. Rev. B
74(16), 165305 (2006),
http://dx.doi.org/10.1103/PhysRevB.74.165305
[19] A. Reklaitis and L. Reggiani, Monte Carlo study of
shot-noise suppression in semiconductor heterostructure diodes,
Phys. Rev. B
60(16), 11683–11693 (1999),
http://dx.doi.org/10.1103/PhysRevB.60.11683
[20] A. Reklaitis, Terahertz emission from InAs induced by
photo-Dember effect: Hydrodynamic analysis and Monte Carlo
simulations, J. Appl. Phys.
108(5), 053102 (2010),
http://dx.doi.org/10.1063/1.3467526
[21] R. Kersting, J.N. Heyman, G. Strasser, and K. Unterrainer,
Coherent plasmons in
n-doped GaAs, Phys. Rev. B
58(8),
4553–4559 (1998),
http://dx.doi.org/10.1103/PhysRevB.58.4553
[22] D.E. Aspnes and A.A. Studna, Dielectric functions and
optical parameters for Si, Ge, GaP, GaAs, GaSb, InP, InAs, and
InSb from 1.5 to 6.0 eV, Phys. Rev. B
27(2), 985–1009
(1983),
http://dx.doi.org/10.1103/PhysRevB.27.985
[23] T. Dekorsy, T. Pfeifer, W. Kütt, and H. Kurz, Subpicosecond
carrier transport in GaAs surface-space-charge fields, Phys.
Rev. B
47(7), 3842–3849 (1993),
http://dx.doi.org/10.1103/PhysRevB.47.3842
[24] A. Reklaitis, Coherence of terahertz emission from
photoexcited electron–hole plasma: Hydrodynamic model and Monte
Carlo simulations, Phys. Rev. B
77(15), 153309 (2008),
http://dx.doi.org/10.1103/PhysRevB.77.153309
[25] A. Reklaitis, Theoretical analysis of conditions for
observation of plasma oscillations in semiconductors from pulsed
terahertz emission, J. Appl. Phys.
116(8), 083107
(2014),
http://dx.doi.org/10.1063/1.4894163
[26] K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, Terahertz
radiation from InAs induced by carrier diffusion and drift,
Phys. Rev. B
73(15), 155330 (2006),
http://dx.doi.org/10.1103/PhysRevB.73.155330
[27] E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura,
M. Hangyo, C. Ponseca Jr., R. Pobre, R. Quiroga, and S. Ono,
Magnetic-field-induced fourfold azimuthal angle dependence in
the terahertz radiation power of (100) InAs, Appl. Phys. Lett.
90(15),
151915 (2007),
http://dx.doi.org/10.1063/1.2721385
[28] L.Ö. Olsson, C.B.M. Andersson, M.C. Håkansson, J. Kanski,
L. Ilver, and U.O. Karlsson, Charge accumulation at InAs
surfaces, Phys. Rev. Lett.
76(19), 3626–3629 (1996),
http://dx.doi.org/10.1103/PhysRevLett.76.3626