[PDF]    http://dx.doi.org/10.3952/physics.v55i4.3224

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 280286 (2015)


OSCILLATIONS OF ELECTRON–HOLE PLASMA IN TERAHERTZ EMITTERS
Antanas Reklaitis
Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: reklaitis@pfi.lt

Received 28 July 2015; accepted 29 September 2015

Oscillations of photogenerated electron–hole plasma in freestanding terahertz emitters are studied using the hydrodynamic analysis and Monte Carlo simulations. The pronounced plasma oscillations are obtained in an n-GaAs emitter in which the oscillations are initiated by the surface electric field. The plasma oscillations are also found in an n-InAs emitter in which the oscillations are induced by the photo-Dember effect.
Keywords: optical excitation, plasma oscillations, GaAs, InAs
PACS: 52.65.Pp, 73.50.Mx, 73.50.Pz

ELEKTRONŲ IR SKYLIŲ PLAZMOS OSCILIACIJOS TERAHERCINIUOSE EMITERIUOSE

Antanas Reklaitis
Puslaidininkių fizikos institutas, Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Panaudojant hidrodinaminį modelį bei modeliavimą Monte Karlo metodu, ištirtos optiškai sukurtų elektronų ir skylių plazmos osciliacijos bekontakčiuose terahercinės spinduliuotės emiteriuose. Gautos ryškiai išreikštos plazminės osciliacijos n-GaAs emiteryje, kuriame osciliacijos yra inicijuotos paviršiniu elektriniu lauku. Plazminės osciliacijos taip pat yra aptiktos n-InAs emiteryje, kuriame osciliacijos yra sukuriamos foto-Demberio efektu.

References / Nuorodos

[1] J. Pozhela, Plasma and Current Instabilities in Semiconductors (Pergamon, Oxford, 1981),
http://store.elsevier.com/Plasma-and-Current-Instabilities-in-Semiconductors/Juras-Pozhela/isbn-9781483189383/
[2] Yu. Pozhela and A. Reklaitis, Instability of hot electrons in two-valley semiconductors, JETP Lett. 31(12), 673–676 (1980),
http://www.jetpLetters.ac.ru/ps/1360/article_20546.pdf
[3] V. Gružinskis, R. Mickevičius, J. Požela, and A. Reklaitis, Collective electron interaction in double-barrier GaAs structures, Europhys. Lett. 5(4), 339–341 (1988),
http://dx.doi.org/10.1209/0295-5075/5/4/010
[4] J. Požela, E. Širmulis, K. Požela, A. Šilėnas, and V. Jucienė, SiC and GaAs emitters as selective terahertz radiation sources, Lith. J. Phys. 53(3), 163–167 (2013),
http://dx.doi.org/10.3952/lithjphys.53306
[5] K. Požela, E. Širmulis, I. Kašalynas, A. Šilėnas, J. Požela, and V. Jucienė, Selective thermal terahertz emission from GaAs and AlGaAs, Appl. Phys. Lett. 105(9), 091601 (2014),
http://dx.doi.org/10.1063/1.4894539
[6] S. Preu, G.H. Döhler, S. Malzer, L.J. Wang, and A.C. Gossard, Tunable, continuous-wave terahertz photomixer sources and applications, J. Appl. Phys. 109(6), 061301 (2011),
http://dx.doi.org/10.1063/1.3552291
[7] G. Seniutinas, G. Gervinskas, E. Constable, A. Krotkus, G. Molis, G. Valušis, R.A. Lewis, and S. Juodkazis, THz photomixer with milled nanoelectrodes on LT-GaAs, Appl. Phys. A 117(2), 439–444 (2014),
http://dx.doi.org/10.1007/s00339-014-8685-8
[8] A. Krotkus, Semiconductors for terahertz photonics applications, J. Phys. D 43(27), 273001 (2010),
http://dx.doi.org/10.1088/0022-3727/43/27/273001
[9] R.A. Lewis, A review of terahertz sources, J. Phys. D 47(37), 374001 (2014),
http://dx.doi.org/10.1088/0022-3727/47/37/374001
[10] V. Apostolopoulos and M.E. Barnes, THz emitters based on the photo-Dember effect, J. Phys. D 47(37), 374002 (2014),
http://dx.doi.org/10.1088/0022-3727/47/37/374002
[11] M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, Polarity reversal of terahertz waves radiated from semi-insulating InP surfaces induced by temperature, Phys. Rev. 67(19), 195308 (2003),
http://dx.doi.org/10.1103/PhysRevB.67.195308
[12] J.N. Heyman, N. Coates, A. Reinhardt, and G. Strasser, Diffusion and drift in terahertz emission at GaAs surfaces, Appl. Phys. Lett. 83(26), 5476–5478 (2003),
http://dx.doi.org/10.1063/1.1636821
[13] S. Winnerl, S. Sinning, T. Dekorsy, and M. Helm, Increased terahertz emission from thermally treated GaSb, Appl. Phys. Lett. 85(15), 3092–3094 (2004),
http://dx.doi.org/10.1063/1.1805197
[14] Y. Shi, X. Xu, Y. Yang, W. Yan, S. Ma, and L. Wang, Anomalous enhancement of terahertz radiation from semi-insulating GaAs surfaces induced by optical pump, Appl. Phys. Lett. 89(8), 081129 (2006),
http://dx.doi.org/10.1063/1.2338805
[15] W. Sha, A.L. Smirl, and W.F. Tseng, Coherent plasma oscillations in bulk semiconductors, Phys. Rev. Lett. 74(21), 4273–4276 (1995),
http://dx.doi.org/10.1103/PhysRevLett.74.4273
[16] R. Kersting, K. Unterrainer, G. Strasser, H.F. Kauffmann, and E. Gornik, Few-cycle THz emission from cold plasma oscillations, Phys. Rev. Lett. 79(16), 3038–3041 (1997),
http://dx.doi.org/10.1103/PhysRevLett.79.3038
[17] W. Fischler, P. Buchberger, R.A. Höpfel, and G. Zandler, Ultrafast reflectivity changes in photoexcited GaAs Schottky diodes, Appl. Phys. Lett. 68(20), 2778–2780 (1996),
http://dx.doi.org/10.1063/1.116604
[18] A. Reklaitis, Monte Carlo analysis of terahertz oscillations of photoexcited carriers in GaAs p-i-n structures, Phys. Rev. B 74(16), 165305 (2006),
http://dx.doi.org/10.1103/PhysRevB.74.165305
[19] A. Reklaitis and L. Reggiani, Monte Carlo study of shot-noise suppression in semiconductor heterostructure diodes, Phys. Rev. B 60(16), 11683–11693 (1999),
http://dx.doi.org/10.1103/PhysRevB.60.11683
[20] A. Reklaitis, Terahertz emission from InAs induced by photo-Dember effect: Hydrodynamic analysis and Monte Carlo simulations, J. Appl. Phys. 108(5), 053102 (2010),
http://dx.doi.org/10.1063/1.3467526
[21] R. Kersting, J.N. Heyman, G. Strasser, and K. Unterrainer, Coherent plasmons in n-doped GaAs, Phys. Rev. B 58(8), 4553–4559 (1998),
http://dx.doi.org/10.1103/PhysRevB.58.4553
[22] D.E. Aspnes and A.A. Studna, Dielectric functions and optical parameters for Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV, Phys. Rev. B 27(2), 985–1009 (1983),
http://dx.doi.org/10.1103/PhysRevB.27.985
[23] T. Dekorsy, T. Pfeifer, W. Kütt, and H. Kurz, Subpicosecond carrier transport in GaAs surface-space-charge fields, Phys. Rev. B 47(7), 3842–3849 (1993),
http://dx.doi.org/10.1103/PhysRevB.47.3842
[24] A. Reklaitis, Coherence of terahertz emission from photoexcited electron–hole plasma: Hydrodynamic model and Monte Carlo simulations, Phys. Rev. B 77(15), 153309 (2008),
http://dx.doi.org/10.1103/PhysRevB.77.153309
[25] A. Reklaitis, Theoretical analysis of conditions for observation of plasma oscillations in semiconductors from pulsed terahertz emission, J. Appl. Phys. 116(8), 083107 (2014),
http://dx.doi.org/10.1063/1.4894163
[26] K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, Terahertz radiation from InAs induced by carrier diffusion and drift, Phys. Rev. B 73(15), 155330 (2006),
http://dx.doi.org/10.1103/PhysRevB.73.155330
[27] E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr., R. Pobre, R. Quiroga, and S. Ono, Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs, Appl. Phys. Lett. 90(15), 151915 (2007),
http://dx.doi.org/10.1063/1.2721385
[28] L.Ö. Olsson, C.B.M. Andersson, M.C. Håkansson, J. Kanski, L. Ilver, and U.O. Karlsson, Charge accumulation at InAs surfaces, Phys. Rev. Lett. 76(19), 3626–3629 (1996),
http://dx.doi.org/10.1103/PhysRevLett.76.3626