[PDF]    http://dx.doi.org/10.3952/physics.v55i4.3221

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 255263 (2015)


ENHANCEMENT OF QUANTUM EFFICIENCY IN InGaN QUANTUM WELLS BY USING SUPERLATTICE INTERLAYERS AND PULSED GROWTH
Kazimieras Nomeika, Mantas Dmukauskas, Ramūnas Aleksiejūnas, Patrik Ščajev, Saulius Miasojedovas, Arūnas Kadys, Saulius Nargelas, and Kęstutis Jarašiūnas
Institute of Applied Research, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: kazimieras.nomeika@tmi.vu.lt

Received 22 June 2015; revised 21 July 2015; accepted 29 September 2015

Enhancement of internal quantum efficiency (IQE) in InGaN quantum wells by insertion of a superlattice interlayer and applying the pulsed growth regime is investigated by a set of time-resolved optical techniques. A threefold IQE increase was achieved in the structure with the superlattice. It was ascribed to the net effect of decreased internal electrical field due to lower strain and altered carrier localization conditions. Pulsed MOCVD growth also resulted in twice higher IQE, presumably due to better control of defects in the structure. An LED (light emitting diode) structure with a top p-type contact GaN layer was manufactured by using both growth techniques with the peak IQE equal to that in the underlying quantum well structure. The linear recombination coefficient was found to gradually increase with excitation due to carrier delocalization, and the latter dependence was successfully used to fit the IQE droop.
Keywords: light emitting diodes, nitride semiconductors, photoluminescence, carrier recombination, carrier diffusion
PACS: 73.21.Fg, 78.67.-n, 78.47.-p

KVANTINIO NAŠUMO PAGERINIMAS InGaN KVANTINĖSE DUOBĖSE ĮTERPIANT SUPERGARDELĘ IR NAUDOJANTIS IMPULSINIU AUGINIMU

Kazimieras Nomeika, Mantas Dmukauskas, Ramūnas Aleksiejūnas, Patrik Ščajev, Saulius Miasojedovas, Arūnas Kadys, Saulius Nargelas, Kęstutis Jarašiūnas
Vilniaus universiteto Taikomųjų mokslų institutas, Vilnius, Lietuva

Vidinio kvantinio našumo (VKN) pagerinimas InGaN kvantinėse duobėse dėl supergardelės įterpimo ir impulsinio auginimo pritaikymo ištirtas laikinės skyros optinių metodikų kombinacija. Supergardelės tarpsluoksnio įterpimas padidino VKN tris kartus, tai gali būti aiškinama sumažėjusiu vidiniu elektriniu lauku dėl mažesnių įtempimų ir pakeistų lokalizacijos sąlygų. Impulsinio auginimo dėka VKN padidėjo dvigubai, tikimiausiai dėl geresnės defektų kontrolės struktūrose. Šviesos diodo darinys su viršutiniu p tipo GaN kontaktiniu sluoksniu buvo pagamintas naudojant supergardelės tarpsluoksnį ir impulsinį auginimą, tokiu būdu gautas toks pats maksimalus VKN kaip ir darinyje be kontaktinio sluoksnio. Tiesinės rekombinacijos koeficientas augo palaipsniui nuo žadinimo intensyvumo dėl krūvininkų delokalizacijos. Pasinaudojus tokia priklausomybe, buvo sėkmingai sumodeliuotas VKN smukimas.

References / Nuorodos

[1] S. Nakamura, GaN growth using GaN buffer layer, Jpn. J. Appl. Phys. 30(10A), L1705 (1991),
http://dx.doi.org/10.1143/JJAP.30.L1705
[2] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer, Appl. Phys. Lett. 48(5), 353–355 (1986),
http://dx.doi.org/10.1063/1.96549
[3] A. Sakai, H. Sunakawa, and A. Usui, Defect structure in selectively grown GaN films with low threading dislocation density, Appl. Phys. Lett. 71(5), 2259–2261 (1997),
http://dx.doi.org/10.1063/1.120044
[4] S.J. Leem, Y.C. Shin, K.C. Kim, E.H. Kim, Y.M. Sung, Y. Moon, S.M. Hwang, and T.G. Kim, The effect of the low-mole InGaN structure and InGaN/GaN strained layer superlattices on optical performance of multiple quantum well active layers, J. Cryst. Growth 311(1), 103–106 (2008),
http://dx.doi.org/10.1016/j.jcrysgro.2008.10.047
[5] S.P. Chang, C.H. Wang, C.H. Chiu, J.C. Li, Y.S. Lu, Z.Y. Li, H.C. Yang, H.C. Kuo, T.C. Lu, and S.C. Wang, Characteristics of efficiency droop in GaN-based light emitting diodes with an insertion layer between the multiple quantum wells and n-GaN layer, Appl. Phys. Lett. 97(25), 251114 (2010),
http://dx.doi.org/10.1063/1.3531957
[6] W.V. Lundin, A.E. Nikolaeva, A.V. Sakharova, E.E. Zavarina, G.A. Valkovskiy, M.A. Yagovkina, S.O. Usov, N.V. Kryzhanovskaya, V.S. Sizov, P.N. Brunkov, A.L. Zakgeim, A.E. Cherniakov, N.A. Cherkashin, M.J. Hytch, E.V. Yakovlev, D.S. Bazarevskiy, M.M. Rozhavskaya, and A.F. Tsatsulnikov, J. Cryst. Growth 315(1), 267–271 (2011),
http://dx.doi.org/10.1016/j.jcrysgro.2010.09.043
[7] T.C. Wen, S.J. Chang, C.T. Lee, W.C. Lai, and J.K. Sheu, Nitride-based LEDs with modulation-doped Al0.12Ga0.88N-GaN superlattice structures, IEEE Trans. Electron Dev. 51(10), 1743–1746 (2004),
http://dx.doi.org/10.1109/TED.2004.835985
[8] Y.J. Liu, T.Y. Tsai, C.H. Yen, L.Y. Chen, T.H. Tsai, and W.C. Liu, Characteristics of a GaN-based light-emitting diode with an inserted p-GaN/i-InGaN superlattice structure, IEEE J. Quantum Electron. 46(4), 492–498 (2010),
http://dx.doi.org/10.1109/JQE.2009.2037337
[9] T. Jeong, H.J. Park, J.W. Ju, H.S. Oh, J.H. Baek, J.S. Ha, G.H. Ryiu, and H.Y. Ryu, High efficiency InGaN blue light-emitting diode with >4 W output power at 3 A, IEEE Photon. Technol. Lett. 26(7), 649–652 (2014),
http://dx.doi.org/10.1109/LPT.2014.2301874
[10] M. Moseley, B. Gunning, J. Greenlee, J. Lowder, G. Namkoong, and W.A. Doolittle, Observation and control of the surface kinetics of InGaN for the elimination of phase separation, J. Appl. Phys. 112(1), 014909 (2012),
http://dx.doi.org/10.1063/1.4733347
[11] N. Dietz, M. Alevli, V. Woods, M. Strassburg, H. Kang, and I.T. Ferguson, The characterization of InN growth under high-pressure CVD conditions, Phys. Status Solidi B 242(15), 2985–2994 (2005),
http://dx.doi.org/10.1002/pssb.200562246
[12] V. Woods and N. Dietz, InN growth by high-pressures chemical vapor deposition: Real-time optical growth characterization, Mater. Sci. Eng. B 127(2–3), 239–250 (2006),
http://dx.doi.org/10.1016/j.mseb.2005.10.032
[13] A. Kadys, T. Malinauskas, M. Dmukauskas, I. Reklaitis, K. Nomeika, V. Gudelis, R. Aleksiejūnas, P. Ščajev, S. Nargelas, S. Miasojedovas, and K. Jarašiūnas, Photoluminescence features and carrier dynamics in InGaN heterostructures with wide staircase interlayers and differently shaped quantum wells, Lith. J. Phys. 54(3), 187–198 (2014),
http://dx.doi.org/10.3952/physics.v54i3.2959
[14] A. Kadys, T. Malinauskas, T. Grinys, M. Dmukauskas, J. Mickevičius, J. Aleknavičius, R. Tomašiūnas, A. Selskis, R. Kondrotas, S. Stanionytė, H. Lugauer, and M. Strassburg, Growth of InN and In-rich InGaN layers on GaN templates by pulsed metalorganic chemical vapor deposition, J. Electron. Mater. 44(1), 188–193 (2015),
http://dx.doi.org/10.1007/s11664-014-3494-6
[15] S. Leyre, E. Coutino-Gonzalez, J.J. Joos, J. Ryckaert, Y. Meuret, D. Poelman, P.F. Smet, G. Durinck, J. Hofkens, G. Deconinck, and P. Hanselaer, Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup, Rev. Sci. Instrum. 85(12), 123115 (2014),
http://dx.doi.org/10.1063/1.4903852
[16] S. Valdueza-Felip, E. Bellet-Amalric, A. Núñez-Cascajero, Y. Wang, M.-P. Chauvat, P. Ruterana, S. Pouget, K. Lorenz, E. Alves, and E. Monroy, High In-content InGaN layers synthesized by plasma-assisted molecular-beam epitaxy: Growth conditions, strain relaxation, and In incorporation kinetics, J. Appl. Phys. 116(23), 233504 (2014),
http://dx.doi.org/10.1063/1.4903944
[17] S. Park, T. Chung, J.H. Baek, and D. Ahn, Reduction of efficiency droop in green strain-compensated InGaN/InGaN light-emitting diodes grown on InGaN substrate, Jpn. J. Appl. Phys. 54(2), 022101 (2015),
http://dx.doi.org/10.7567/JJAP.54.022101
[18] Y.L. Li, Y.R. Huang, and Y.H. Lai, Efficiency droop behaviors of InGaN∕GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness, App. Phys. Lett. 91(18), 181113 (2007),
http://dx.doi.org/10.1063/1.2805197
[19] G. Sun, G. Xu, Y.J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, Investigation of fast and slow decays in InGaN/GaN quantum wells, Appl. Phys. Lett. 99(8), 081104 (2011),
http://dx.doi.org/10.1063/1.3627166
[20] M.J. Davies, T.J. Badcock, P. Dawson, M.J. Kappers, R.A. Oliver, and C.J. Humphreys, High excitation carrier density recombination dynamics of InGaN/GaN quantum well structures: Possible relevance to efficiency droop, Appl. Phys. Lett. 102(2), 022106 (2013),
http://dx.doi.org/10.1063/1.4781398
[21] N.I. Bochkareva, Y.T. Rebane, and Y.G. Shreter, Efficiency droop and incomplete carrier localization in InGaN/GaN quantum well light-emitting diodes, Appl. Phys. Lett. 103(19), 191101 (2013),
http://dx.doi.org/10.1063/1.4828780
[22] R. Aleksiejūnas, K. Nomeika, S. Miasojedovas, S. Nargelas, T. Malinauskas, K. Jarašiūnas, Ö. Tuna, and M. Heuken, Carrier dynamics in blue and green emitting InGaN MQWs, Phys. Status Solidi B 252(5) 977–982 (2015),
http://dx.doi.org/10.1002/pssb.201451583
[23] J. Piprek, Efficiency droop in nitride-based light-emitting diodes, Phys. Status Solidi A 207(10), 2217–2225 (2010),
http://dx.doi.org/10.1002/pssa.201026149
[24] J. Hader, J.V. Moloney, and S.W. Koch, Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes, Appl. Phys. Lett. 96(22), 221106 (2010),
http://dx.doi.org/10.1063/1.3446889
[25] T. Malinauskas, A. Kadys, T. Grinys, S. Nargelas, R. Aleksiejūnas, S. Miasojedovas, J. Mickevičius, R. Tomašiūnas, K. Jarašiūnas, M. Vengris, S. Okur, V. Avrutin, X. Li, F. Zhang, Ü. Özgür, and H. Morkoç, Impact of carrier localization, recombination, and diffusivity on excited state dynamics in InGaN/GaN quantum wells, Proc. SPIE 8262, 82621S–1 (2012),
http://dx.doi.org/10.1117/12.906488
[26] R. Aleksiejūnas, K. Gelžinytė, S. Nargelas, K. Jarašiūnas, M. Vengris, E.A. Armour, D.P. Byrnes, R.A. Arif, S.M. Lee, and G.D. Papasouliotis, Diffusion-driven and excitation-dependent recombination rate in blue InGaN/GaN quantum well structures, Appl. Phys. Lett. 104(2), 022114 (2014),
http://dx.doi.org/10.1063/1.4862026
[27] T. Sadi, P. Kivisaari, J. Oksanen, and J. Tulkki, On the correlation of the Auger generated hot electron emission and efficiency droop in III-N light-emitting diodes, Appl. Phys. Lett. 105(9), 091106 (2014),
http://dx.doi.org/10.1063/1.4894862
[28] A. David and M.J. Grundmann, Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis, Appl. Phys. Lett. 96(10), 103504 (2010),
http://dx.doi.org/10.1063/1.3330870
[29] J.I. Shim, H.S. Kim, D.S. Shin, and H.Y. Yoo, An explanation of efficiency droop in InGaN-based light emitting diodes: Saturated radiative recombination rate at randomly distributed In-rich active areas, J. Korean Phys. Soc. 58(3), 503–508 (2011),
http://dx.doi.org/10.3938/jkps.58.503
[30] R. Aleksiejūnas, P. Ščajev, S. Nargelas, T. Malinauskas, A. Kadys, and K. Jarašiūnas, Impact of diffusivity to carrier recombination rate in nitride semiconductors: from bulk GaN to (In, Ga)N quantum wells, Jpn. J. Appl. Phys. 52(8 S), 08JK01 (2013),
http://dx.doi.org/10.7567/JJAP.52.08JK01
[31] F. Hitzel, G. Klewer, S. Lahmann, U. Rossow, and A. Hangleiter, Localized high-energy emissions from the vicinity of defects in high-efficiency GaxIn1–xN∕GaN quantum wells, Phys. Rev. B 72, 081309(R) (2005),
http://dx.doi.org/10.1103/PhysRevB.72.081309
[32] R. Aleksiejūnas, M. Sūdžius, T. Malinauskas, J. Vaitkus, K. Jarašiūnas, and S. Sakai, Determination of free carrier bipolar diffusion coefficient and surface recombination velocity of undoped GaN epilayers, Appl. Phys. Lett. 83(6), 1157–1159 (2003),
http://dx.doi.org/10.1063/1.1599036
[33] D.M. Graham, P. Dawson, Y. Zhang, P.M.F.J. Costa, M.J. Kappers, C.J. Humphreys, and E.J. Thrush, The effect of a Mg-doped GaN cap layer on the optical properties of InGaN/AlGaN multiple quantum well structures, Phys. Status Solidi B 3(6), 2005–2008 (2006),
http://dx.doi.org/10.1002/pssc.200565246