Kazimieras Nomeika, Mantas Dmukauskas, Ramūnas Aleksiejūnas,
Patrik Ščajev, Saulius Miasojedovas, Arūnas Kadys, Saulius
Nargelas, and Kęstutis Jarašiūnas
Received 22 June 2015; revised 21 July 2015; accepted 29 September
2015
KVANTINIO NAŠUMO PAGERINIMAS
InGaN KVANTINĖSE DUOBĖSE ĮTERPIANT SUPERGARDELĘ IR
NAUDOJANTIS IMPULSINIU AUGINIMU
Vidinio kvantinio našumo (VKN)
pagerinimas InGaN kvantinėse duobėse dėl supergardelės įterpimo
ir impulsinio auginimo pritaikymo ištirtas laikinės skyros
optinių metodikų kombinacija. Supergardelės tarpsluoksnio
įterpimas padidino VKN tris kartus, tai gali būti aiškinama
sumažėjusiu vidiniu elektriniu lauku dėl mažesnių įtempimų ir
pakeistų lokalizacijos sąlygų. Impulsinio auginimo dėka VKN
padidėjo dvigubai, tikimiausiai dėl geresnės defektų kontrolės
struktūrose. Šviesos diodo darinys su viršutiniu p tipo GaN
kontaktiniu sluoksniu buvo pagamintas naudojant supergardelės
tarpsluoksnį ir impulsinį auginimą, tokiu būdu gautas toks pats
maksimalus VKN kaip ir darinyje be kontaktinio sluoksnio.
Tiesinės rekombinacijos koeficientas augo palaipsniui nuo
žadinimo intensyvumo dėl krūvininkų delokalizacijos.
Pasinaudojus tokia priklausomybe, buvo sėkmingai sumodeliuotas
VKN smukimas.
References
/
Nuorodos
[1] S. Nakamura, GaN
growth using GaN buffer layer, Jpn. J. Appl. Phys.
30(10A),
L1705 (1991),
http://dx.doi.org/10.1143/JJAP.30.L1705
[2] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Metalorganic
vapor phase epitaxial growth of a high quality GaN film using an
AlN buffer layer, Appl. Phys. Lett.
48(5), 353–355
(1986),
http://dx.doi.org/10.1063/1.96549
[3] A. Sakai, H. Sunakawa, and A. Usui, Defect structure in
selectively grown GaN films with low threading dislocation
density, Appl. Phys. Lett.
71(5), 2259–2261 (1997),
http://dx.doi.org/10.1063/1.120044
[4] S.J. Leem, Y.C. Shin, K.C. Kim, E.H. Kim, Y.M. Sung, Y.
Moon, S.M. Hwang, and T.G. Kim, The effect of the low-mole InGaN
structure and InGaN/GaN strained layer superlattices on optical
performance of multiple quantum well active layers, J. Cryst.
Growth
311(1), 103–106 (2008),
http://dx.doi.org/10.1016/j.jcrysgro.2008.10.047
[5] S.P. Chang, C.H. Wang, C.H. Chiu, J.C. Li, Y.S. Lu, Z.Y. Li,
H.C. Yang, H.C. Kuo, T.C. Lu, and S.C. Wang, Characteristics of
efficiency droop in GaN-based light emitting diodes with an
insertion layer between the multiple quantum wells and n-GaN
layer, Appl. Phys. Lett.
97(25), 251114 (2010),
http://dx.doi.org/10.1063/1.3531957
[6] W.V. Lundin, A.E. Nikolaeva, A.V. Sakharova, E.E. Zavarina,
G.A. Valkovskiy, M.A. Yagovkina, S.O. Usov, N.V. Kryzhanovskaya,
V.S. Sizov, P.N. Brunkov, A.L. Zakgeim, A.E. Cherniakov, N.A.
Cherkashin, M.J. Hytch, E.V. Yakovlev, D.S. Bazarevskiy, M.M.
Rozhavskaya, and A.F. Tsatsulnikov, J. Cryst. Growth
315(1),
267–271 (2011),
http://dx.doi.org/10.1016/j.jcrysgro.2010.09.043
[7] T.C. Wen, S.J. Chang, C.T. Lee, W.C. Lai, and J.K. Sheu,
Nitride-based LEDs with modulation-doped Al
0.12Ga
0.88N-GaN
superlattice structures, IEEE Trans. Electron Dev.
51(10),
1743–1746 (2004),
http://dx.doi.org/10.1109/TED.2004.835985
[8] Y.J. Liu, T.Y. Tsai, C.H. Yen, L.Y. Chen, T.H. Tsai, and
W.C. Liu, Characteristics of a GaN-based light-emitting diode
with an inserted p-GaN/i-InGaN superlattice structure, IEEE J.
Quantum Electron.
46(4), 492–498 (2010),
http://dx.doi.org/10.1109/JQE.2009.2037337
[9] T. Jeong, H.J. Park, J.W. Ju, H.S. Oh, J.H. Baek, J.S. Ha,
G.H. Ryiu, and H.Y. Ryu, High efficiency InGaN blue
light-emitting diode with >4 W output power at 3 A, IEEE
Photon. Technol. Lett.
26(7), 649–652 (2014),
http://dx.doi.org/10.1109/LPT.2014.2301874
[10] M. Moseley, B. Gunning, J. Greenlee, J. Lowder, G.
Namkoong, and W.A. Doolittle, Observation and control of the
surface kinetics of InGaN for the elimination of phase
separation, J. Appl. Phys.
112(1), 014909 (2012),
http://dx.doi.org/10.1063/1.4733347
[11] N. Dietz, M. Alevli, V. Woods, M. Strassburg, H. Kang, and
I.T. Ferguson, The characterization of InN growth under
high-pressure CVD conditions, Phys. Status Solidi B
242(15),
2985–2994 (2005),
http://dx.doi.org/10.1002/pssb.200562246
[12] V. Woods and N. Dietz, InN growth by high-pressures
chemical vapor deposition: Real-time optical growth
characterization, Mater. Sci. Eng. B
127(2–3), 239–250
(2006),
http://dx.doi.org/10.1016/j.mseb.2005.10.032
[13] A. Kadys, T. Malinauskas, M. Dmukauskas, I. Reklaitis, K.
Nomeika, V. Gudelis, R. Aleksiejūnas, P. Ščajev, S. Nargelas, S.
Miasojedovas, and K. Jarašiūnas, Photoluminescence features and
carrier dynamics in InGaN heterostructures with wide staircase
interlayers and differently shaped quantum wells, Lith. J. Phys.
54(3), 187–198 (2014),
http://dx.doi.org/10.3952/physics.v54i3.2959
[14] A. Kadys, T. Malinauskas, T. Grinys, M. Dmukauskas, J.
Mickevičius, J. Aleknavičius, R. Tomašiūnas, A. Selskis, R.
Kondrotas, S. Stanionytė, H. Lugauer, and M. Strassburg, Growth
of InN and In-rich InGaN layers on GaN templates by pulsed
metalorganic chemical vapor deposition, J. Electron. Mater.
44(1),
188–193 (2015),
http://dx.doi.org/10.1007/s11664-014-3494-6
[15] S. Leyre, E. Coutino-Gonzalez, J.J. Joos, J. Ryckaert, Y.
Meuret, D. Poelman, P.F. Smet, G. Durinck, J. Hofkens, G.
Deconinck, and P. Hanselaer, Absolute determination of
photoluminescence quantum efficiency using an integrating sphere
setup, Rev. Sci. Instrum.
85(12), 123115 (2014),
http://dx.doi.org/10.1063/1.4903852
[16] S. Valdueza-Felip, E. Bellet-Amalric, A. Núñez-Cascajero,
Y. Wang, M.-P. Chauvat, P. Ruterana, S. Pouget, K. Lorenz, E.
Alves, and E. Monroy, High In-content InGaN layers synthesized
by plasma-assisted molecular-beam epitaxy: Growth conditions,
strain relaxation, and In incorporation kinetics, J. Appl. Phys.
116(23), 233504 (2014),
http://dx.doi.org/10.1063/1.4903944
[17] S. Park, T. Chung, J.H. Baek, and D. Ahn, Reduction of
efficiency droop in green strain-compensated InGaN/InGaN
light-emitting diodes grown on InGaN substrate, Jpn. J. Appl.
Phys.
54(2), 022101 (2015),
http://dx.doi.org/10.7567/JJAP.54.022101
[18] Y.L. Li, Y.R. Huang, and Y.H. Lai, Efficiency droop
behaviors of InGaN∕GaN multiple-quantum-well light-emitting
diodes with varying quantum well thickness, App. Phys. Lett.
91(18),
181113 (2007),
http://dx.doi.org/10.1063/1.2805197
[19] G. Sun, G. Xu, Y.J. Ding, H. Zhao, G. Liu, J. Zhang, and N.
Tansu, Investigation of fast and slow decays in InGaN/GaN
quantum wells, Appl. Phys. Lett.
99(8), 081104 (2011),
http://dx.doi.org/10.1063/1.3627166
[20] M.J. Davies, T.J. Badcock, P. Dawson, M.J. Kappers, R.A.
Oliver, and C.J. Humphreys, High excitation carrier density
recombination dynamics of InGaN/GaN quantum well structures:
Possible relevance to efficiency droop, Appl. Phys. Lett.
102(2),
022106 (2013),
http://dx.doi.org/10.1063/1.4781398
[21] N.I. Bochkareva, Y.T. Rebane, and Y.G. Shreter, Efficiency
droop and incomplete carrier localization in InGaN/GaN quantum
well light-emitting diodes, Appl. Phys. Lett.
103(19),
191101 (2013),
http://dx.doi.org/10.1063/1.4828780
[22] R. Aleksiejūnas, K. Nomeika, S. Miasojedovas, S. Nargelas,
T. Malinauskas, K. Jarašiūnas, Ö. Tuna, and M. Heuken, Carrier
dynamics in blue and green emitting InGaN MQWs, Phys. Status
Solidi B
252(5) 977–982 (2015),
http://dx.doi.org/10.1002/pssb.201451583
[23] J. Piprek, Efficiency droop in nitride-based light-emitting
diodes, Phys. Status Solidi A
207(10), 2217–2225 (2010),
http://dx.doi.org/10.1002/pssa.201026149
[24] J. Hader, J.V. Moloney, and S.W. Koch, Density-activated
defect recombination as a possible explanation for the
efficiency droop in GaN-based diodes, Appl. Phys. Lett.
96(22),
221106 (2010),
http://dx.doi.org/10.1063/1.3446889
[25] T. Malinauskas, A. Kadys, T. Grinys, S. Nargelas, R.
Aleksiejūnas, S. Miasojedovas, J. Mickevičius, R. Tomašiūnas, K.
Jarašiūnas, M. Vengris, S. Okur, V. Avrutin, X. Li, F. Zhang, Ü.
Özgür, and H. Morkoç, Impact of carrier localization,
recombination, and diffusivity on excited state dynamics in
InGaN/GaN quantum wells, Proc. SPIE
8262, 82621S–1
(2012),
http://dx.doi.org/10.1117/12.906488
[26] R. Aleksiejūnas, K. Gelžinytė, S. Nargelas, K. Jarašiūnas,
M. Vengris, E.A. Armour, D.P. Byrnes, R.A. Arif, S.M. Lee, and
G.D. Papasouliotis, Diffusion-driven and excitation-dependent
recombination rate in blue InGaN/GaN quantum well structures,
Appl. Phys. Lett.
104(2), 022114 (2014),
http://dx.doi.org/10.1063/1.4862026
[27] T. Sadi, P. Kivisaari, J. Oksanen, and J. Tulkki, On the
correlation of the Auger generated hot electron emission and
efficiency droop in III-N light-emitting diodes, Appl. Phys.
Lett.
105(9), 091106 (2014),
http://dx.doi.org/10.1063/1.4894862
[28] A. David and M.J. Grundmann, Droop in InGaN light-emitting
diodes: A differential carrier lifetime analysis, Appl. Phys.
Lett.
96(10), 103504 (2010),
http://dx.doi.org/10.1063/1.3330870
[29] J.I. Shim, H.S. Kim, D.S. Shin, and H.Y. Yoo, An
explanation of efficiency droop in InGaN-based light emitting
diodes: Saturated radiative recombination rate at randomly
distributed In-rich active areas, J. Korean Phys. Soc.
58(3),
503–508 (2011),
http://dx.doi.org/10.3938/jkps.58.503
[30] R. Aleksiejūnas, P. Ščajev, S. Nargelas, T. Malinauskas, A.
Kadys, and K. Jarašiūnas, Impact of diffusivity to carrier
recombination rate in nitride semiconductors: from bulk GaN to
(In, Ga)N quantum wells, Jpn. J. Appl. Phys.
52(8 S),
08JK01 (2013),
http://dx.doi.org/10.7567/JJAP.52.08JK01
[31] F. Hitzel, G. Klewer, S. Lahmann, U. Rossow, and A.
Hangleiter, Localized high-energy emissions from the vicinity of
defects in high-efficiency Ga
xIn
1–xN∕GaN
quantum wells, Phys. Rev. B
72, 081309(R) (2005),
http://dx.doi.org/10.1103/PhysRevB.72.081309
[32] R. Aleksiejūnas, M. Sūdžius, T. Malinauskas, J. Vaitkus, K.
Jarašiūnas, and S. Sakai, Determination of free carrier bipolar
diffusion coefficient and surface recombination velocity of
undoped GaN epilayers, Appl. Phys. Lett.
83(6),
1157–1159 (2003),
http://dx.doi.org/10.1063/1.1599036
[33] D.M. Graham, P. Dawson, Y. Zhang, P.M.F.J. Costa, M.J.
Kappers, C.J. Humphreys, and E.J. Thrush, The effect of a
Mg-doped GaN cap layer on the optical properties of InGaN/AlGaN
multiple quantum well structures, Phys. Status Solidi B
3(6),
2005–2008 (2006),
http://dx.doi.org/10.1002/pssc.200565246