[PDF]    http://dx.doi.org/10.3952/physics.v55i4.3222

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 264273 (2015)


EXCITONIC LIGHT EMISSION DECAY TIME MEASUREMENTS IN MODERATELY δ-DOPED GaAs/AlAs MULTIPLE QUANTUM WELLS
Jurgis Kundrotasa, Aurimas Čerškusa, Gintaras Valušisa, Edmund Harold Linfieldb, Eric Johannessenc, and Agne Johannessenc
aSemiconductor Physics Institute of Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: aurimas.cerskus@ftmc.lt
bSchool of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
cBuskerud and Vestfold University College, Raveien 215, 3184 Borre, Norway

Received 23 June 2015; revised 10 August 2015; accepted 29 September 2015

The radiative recombination rate of moderately doped n-type and p-type GaAs/AlAs multiple quantum wells using a time-correlated single photon counting system is presented. The experimental study has been obtained within a wide temperature range from liquid helium to room temperature and the work has focused on identifying photoluminescence decay rates based on free-exciton recombinations. It was found that the free exciton decay time was reduced in doped multiple GaAs/AlAs quantum wells, and that the reduction rate depends on both the concentration and doping type.
Keywords: quantum well, photoluminescence, lifetime
PACS: 78.55.-m, 78.67.De, 78.47.jd

EKSITONINĖS SPINDULIUOTĖS GESIMO TRUKMIŲ MATAVIMAI VIDUTINIŠKAI δ-LEGIRUOTUOSE GaAs/AlAs KARTOTINIUOSE KVANTINIUOSE ŠULINIUOSE

Jurgis Kundrotasa, Aurimas Čerškusa, Gintaras Valušisa, Edmund Harold Linfieldb, Eric Johannessenc, Agne Johannessenc
aFizinių ir technologijos mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lietuva
bLidso universitetas, Lidsas, Jungtinė Karalystė
cBuskerudo ir Vestfoldo universitetinis koledžas, Borre, Norvegija

Šiame darbe tirtos kartotinės kvantinės duobės buvo užaugintos molekulinių pluoštelių epitaksijos būdu ant didžiavaržių GaAs padėklų. Kvantinės GaAs 20 nm pločio duobės buvo atskirtos 5 nm pločio AlAs barjerais. Į kiekvienos kvantinės duobės vidurį buvo įterptas silicio (Si) donorinių arba berilio (Be) akceptorinių priemaišų δ sluoksnis.
Rekombinaciniai vyksmai buvo tirti plačiame temperatūrų intervale keičiant kvantinių duobių gardelės temperatūrą nuo 3,6 iki 300 K. Fotoliuminescencijos žadinimui naudojome diodu kaupinamą Nd:LSB kietojo kūno pikosekundinį lazerį. Dinaminiai fotoliuminescencijos vyksmai buvo tiriami naudojant koreliuotų pavienių fotonų skaičiavimo metodiką (TCSPC). Pagrindinis dėmesys skirtas laisvųjų eksitonų spinduliuotės gesimo trukmių tyrimui. Nustatyta, kad gesimo laikas sutrumpėja legiruotuose GaAs/AlAs kartotiniuose kvantiniuose šuliniuose. Jis priklauso nuo priemaišų tankio ir jų tipo: n ar p. Stipresnis gesimas stebimas n tipo bandiniuose esant mažesniems priemaišų tankiams. Prieita prie išvados, kad yra svarbūs kolektyviniai priemaišų reiškiniai, susiję su priemaišų banginių funkcijų persiklojimu ir Moto dielektrikas–metalas virsmu. n tipo priemaišoms būdinga mažesnė jonizacijos energija bei didesnis Boro radiusas lyginant su p tipo priemaišomis. Kolektyviniai reiškiniai pasireiškia n tipo kvantiniuose šuliniuose esant mažesniems tankiams.

References / Nuorodos

[1] J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, 2nd ed. (Springer-Verlag, Heidelberg, 1999),
http://dx.doi.org/10.1007/978-3-662-03770-6
[2] T.C. Damen, J. Shah, D.Y. Oberli, D.S. Chemla, J.E. Cunningham, and J.M. Kuo, Dynamics of exciton formation and relaxation in GaAs quantum wells, Phys. Rev. B. 42, 7434–7438 (1990),
http://dx.doi.org/10.1103/PhysRevB.42.7434
[3] R. Kumar, A.S. Vengurlekar, S.S. Prabhu, J. Shah, and L.N. Pfeiffer, Picosecond time evolution of free electron-hole pairs into excitons in GaAs quantum wells, Phys. Rev. B 54, 4891–4897 (1996),
http://dx.doi.org/10.1103/PhysRevB.54.4891
[4] J. Szczytko, L. Kappei, J. Berney, F. Morier-Genoud, M.T. Portella-Oberli, and B. Deveaud, Determination of the exciton formation in quantum wells from time-resolved interband luminescence, Phys. Rev. Lett. 93, 137401 (2004),
http://dx.doi.org/10.1103/PhysRevLett.93.137401
[5] E. Kozhemyakina, K. Zhuravlev, A. Amo, and L. Viña, Exciton-formation time obtained from the spin splitting dynamics, J. Phys. Conf. Ser. 210, 012002 (2010),
http://dx.doi.org/10.1088/1742-6596/210/1/012002
[6] A. Thilagam and J. Singh, Generation rate of 2D excitons in quantum wells, J. Lumin. 55, 11–16 (1993),
http://dx.doi.org/10.1016/0022-2313(93)90078-2
[7] C. Piermarocchi, F. Tassone, V. Savona, A. Quattropani, and P. Schwendimann, Nonequilibrium dynamics of free quantum-well excitons in time-resolved photoluminescence, Phys. Rev. B 53, 15834–15841 (1996),
http://dx.doi.org/10.1103/PhysRevB.53.15834
[8] C. Piermarocchi, F. Tassone, V. Savona, A. Quattropani, and P. Schwendimann, Exciton formation rates in GaAs/AlxGa1-xAs quantum wells, Phys. Rev. B 55, 1333–1336 (1997),
http://dx.doi.org/10.1103/PhysRevB.55.1333
[9] J. Feldmann, G. Peter, E.O. Göbel, P. Dawson, K. Moore, C. Foxon, and R.J. Elliott, Linewidth dependence of radiative exciton lifetimes in quantum wells, Phys. Rev. Lett. 59, 2337–2340 (1987),
http://dx.doi.org/10.1103/PhysRevLett.59.2337
[10] M. Gurioli, A. Vinattieri, M. Colocci, C. Deparis, J. Massies, G. Neu, A. Bosacchi, and S. Franchi, Temperature dependence of the radiative and nonradiative recombination time in GaAs/AlxGa1-xAs quantum-well structures, Phys. Rev. B 44, 3115–3124 (1991),
http://dx.doi.org/10.1103/PhysRevB.44.3115
[11] J. Martinez-Pastor, A. Vinattieri, L. Carraresi, M. Colocci, Ph. Roussignol, and G. Weimann, Temperature dependence of exciton lifetimes in GaAs/AlxGa1-xAs single quantum wells, Phys. Rev. B 47, 10456–10460 (1993),
http://dx.doi.org/10.1103/PhysRevB.47.10456
[12] R. Eccleston, B.F. Feuerbacher, J. Kuhl, W.W. Rühle, and K. Ploog, Density-dependent exciton radiative lifetimes in GaAs quantum wells, Phys. Rev. B 45, 11403–11406 (1992),
http://dx.doi.org/10.1103/PhysRevB.45.11403
[13] V. Srinivas, J. Hryniewicz, Y.J. Chen, and C.E.C. Wood, Intrinsic linewidths and radiative lifetimes of free excitons in GaAs quantum wells, Phys. Rev. B 46, 10193–10196 (1992),
http://dx.doi.org/10.1103/PhysRevB.46.10193
[14] B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and D.S. Katzer, Enhanced radiative recombination of free excitons in GaAs quantum wells, Phys. Rev. Lett. 67, 2355–2358 (1991),
http://dx.doi.org/10.1103/PhysRevLett.67.2355
[15] A. Vinattieri, J. Shah, T.C. Damen, D.S. Kim, L.N. Pfeiffer, M.Z. Maialle, and L.J. Sham, Exciton dynamics in GaAs quantum wells under resonant excitation, Phys. Rev. B 50, 10868–10879 (1994),
http://dx.doi.org/10.1103/PhysRevB.50.10868
[16] E. Hanamura, Rapid radiative decay and enhanced optical nonlinearity of excitons in a quantum well, Phys. Rev. B 38, 1228–1234 (1988),
http://dx.doi.org/10.1103/PhysRevB.38.1228
[17] L.C. Andreani, F. Tassone, and F. Bassani, Radiative lifetime of free excitons in quantum wells, Solid State Commun. 77, 641–645 (1991),
http://dx.doi.org/10.1016/0038-1098(91)90761-J
[18] D.S. Citrin, Radiative lifetimes of excitons in quantum wells: Localization and phase-coherence effects, Phys. Rev. B 47, 3832–3841 (1993),
http://dx.doi.org/10.1103/PhysRevB.47.3832
[19] K. Muraki, Y. Takahashi, A. Fujiwara, S. Fukatsu, and Y. Shiraki, Enhancement of free-to-bound transitions due to resonant electron capture in Be-doped AlGaAs/GaAs quantum wells, Solid State Electron. 37, 1247–1250 (1994),
http://dx.doi.org/10.1016/0038-1101(94)90400-6
[20] G.A. Balchin, L.M. Smith, A. Petrou, and B.D. McCombe, Time-resolved polarized photoluminescence spectroscopy of confined donors in GaAs/AlxGa1-xAs quantum wells, Superlattices Microstruct. 18, 291–296 (1995),
http://dx.doi.org/10.1006/spmi.1995.1114
[21] J. Kundrotas, A. Čerškus, G. Valušis, E.H. Linfield, E. Johannessen, and A. Johannessen, Dynamics of free carriers – neutral impurity related optical transitions in Be and Si δ-doped GaAs/AlAs multiple quantum wells: Fractional-dimensional space approach, Lith. J. Phys. 54, 233–243 (2014),
http://dx.doi.org/10.3952/physics.v54i4.3012
[22] J.P. Bergman, P.O. Holtz, B. Monemar, M. Sundaram, J.L. Merz, and A.C. Gossard, Decay measurements of free- and bound-exciton recombination in doped GaAs/AlxGa1-xAs quantum wells, Phys. Rev. B 43, 4765–4770 (1991),
http://dx.doi.org/10.1103/PhysRevB.43.4765
[23] C.I. Harris, B. Monemar, H. Kalt, P.O. Holtz, M. Sundaram, J.L. Merz, and A.C. Gossard, Exciton dynamics in GaAs/AlxGa1-xAs doped quantum wells, Phys. Rev. B 50, 18367–18374 (1994),
http://dx.doi.org/10.1103/PhysRevB.50.18367
[24] T. Matsusue and H. Sakaki, Radiative recombination coefficient of free carriers in GaAs-AlGaAs quantum wells and its dependence on temperature, Appl. Phys. Lett. 50, 1429–1431 (1987),
http://dx.doi.org/10.1063/1.97844
[25] P.J. Bishop, M.E. Daniels, B.K. Ridley, and K. Woodbridge, Radiative recombination in GaAs/AlxGa1-xAs quantum wells, Phys. Rev. B 45, 6686–6691 (1992),
http://dx.doi.org/10.1103/PhysRevB.45.6686
[26] J.W. Orton, P. Dawson, D.E. Lacklison, T.S. Cheng, and C.T. Foxon, Recombination lifetime measurements in AlGaAs/GaAs quantum well structures, Semicond. Sci. Technol. 9, 1616–1622 (1994),
http://dx.doi.org/10.1088/0268-1242/9/9/008
[27] N.F. Mott, Metal-Insulator Transitions, 2nd ed. (Taylor & Francis, London, 1990),
http://www.amazon.co.uk/Metal-Insulator-Transitions-Nevill-Mott/dp/0850667836/
[28] J. Kundrotas, A. Čerškus, G. Valušis, M. Lachab, S.P. Khanna, P. Harrison, and E.H. Linfield, Radiative recombination spectra of p-type δ-doped GaAs/AlAs multiple quantum wells near the Mott transition, J. Appl. Phys. 103, 123108 (2008),
http://dx.doi.org/10.1063/1.2943262
[29] J. Kundrotas, A. Čerškus, G. Valušis, L.H. Li, E.H. Linfield, A. Johannessen, and E. Johannessen, Light emission lifetimes in p-type δ-doped GaAs/AlAs multiple quantum wells near the Mott transition, J. Appl. Phys. 112, 043105 (2012),
http://dx.doi.org/10.1063/1.4745893
[30] A. Čerškus, J. Kundrotas, G. Valušis, P. Harrison, S. Khanna, and E. Linfield, Formation of low energy tails in silicon δ-doped GaAs/AlAs multiple quantum wells, Proc. SPIE 6596, 659613 (2007),
http://dx.doi.org/10.1117/12.726489
[31] J. Kundrotas, A. Čerškus, S. Ašmontas, G. Valušis, B. Sherliker, M.P. Halsall, M.J. Steer, E. Johannessen, and P. Harrison, Excitonic and impurity-related optical transitions in Be δ-doped GaAs/AlAs multiple quantum wells: Fractional-dimensional space approach, Phys. Rev. B 72, 235322 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.235322
[32] J. Kundrotas, A. Čerškus, G. Valušis, A. Johannessen, E. Johannessen, P. Harrison, and E.H. Linfield, Impurity-related photoluminescence line shape asymmetry in GaAs/AlAs multiple quantum wells: Fractional-dimensional space approach, J. Appl. Phys. 107, 093109 (2010),
http://dx.doi.org/10.1063/1.3342673
[33] H.W. Yoon, D.R. Wake, and J.P. Wolfe, Effect of exciton-carrier thermodynamics on the GaAs quantum well photoluminescence, Phys. Rev. B 54, 2763–2774 (1996),
http://dx.doi.org/10.1103/PhysRevB.54.2763