Received 23 June 2015; revised 10 August 2015; accepted 29
September 2015
Šiame darbe tirtos kartotinės
kvantinės duobės buvo užaugintos molekulinių pluoštelių
epitaksijos būdu ant didžiavaržių GaAs padėklų. Kvantinės GaAs
20 nm pločio duobės buvo atskirtos 5 nm pločio AlAs barjerais. Į
kiekvienos kvantinės duobės vidurį buvo įterptas silicio (Si)
donorinių arba berilio (Be) akceptorinių priemaišų δ
sluoksnis.
Rekombinaciniai vyksmai buvo tirti plačiame temperatūrų
intervale keičiant kvantinių duobių gardelės temperatūrą nuo 3,6
iki 300 K. Fotoliuminescencijos žadinimui naudojome diodu
kaupinamą Nd:LSB kietojo kūno pikosekundinį lazerį. Dinaminiai
fotoliuminescencijos vyksmai buvo tiriami naudojant koreliuotų
pavienių fotonų skaičiavimo metodiką (TCSPC). Pagrindinis
dėmesys skirtas laisvųjų eksitonų spinduliuotės gesimo trukmių
tyrimui. Nustatyta, kad gesimo laikas sutrumpėja legiruotuose
GaAs/AlAs kartotiniuose kvantiniuose šuliniuose. Jis priklauso
nuo priemaišų tankio ir jų tipo: n ar p.
Stipresnis gesimas stebimas n tipo bandiniuose esant
mažesniems priemaišų tankiams. Prieita prie išvados, kad yra
svarbūs kolektyviniai priemaišų reiškiniai, susiję su priemaišų
banginių funkcijų persiklojimu ir Moto dielektrikas–metalas
virsmu. n tipo priemaišoms būdinga mažesnė jonizacijos
energija bei didesnis Boro radiusas lyginant su p tipo
priemaišomis. Kolektyviniai reiškiniai pasireiškia n
tipo kvantiniuose šuliniuose esant mažesniems tankiams.
References
/
Nuorodos
[1] J. Shah,
Ultrafast
Spectroscopy of Semiconductors and Semiconductor
Nanostructures, 2nd ed. (Springer-Verlag, Heidelberg,
1999),
http://dx.doi.org/10.1007/978-3-662-03770-6
[2] T.C. Damen, J. Shah, D.Y. Oberli, D.S. Chemla, J.E.
Cunningham, and J.M. Kuo, Dynamics of exciton formation and
relaxation in GaAs quantum wells, Phys. Rev. B.
42,
7434–7438 (1990),
http://dx.doi.org/10.1103/PhysRevB.42.7434
[3] R. Kumar, A.S. Vengurlekar, S.S. Prabhu, J. Shah, and L.N.
Pfeiffer, Picosecond time evolution of free electron-hole pairs
into excitons in GaAs quantum wells, Phys. Rev. B
54,
4891–4897 (1996),
http://dx.doi.org/10.1103/PhysRevB.54.4891
[4] J. Szczytko, L. Kappei, J. Berney, F. Morier-Genoud, M.T.
Portella-Oberli, and B. Deveaud, Determination of the exciton
formation in quantum wells from time-resolved interband
luminescence, Phys. Rev. Lett.
93, 137401 (2004),
http://dx.doi.org/10.1103/PhysRevLett.93.137401
[5] E. Kozhemyakina, K. Zhuravlev, A. Amo, and L. Viña,
Exciton-formation time obtained from the spin splitting
dynamics, J. Phys. Conf. Ser.
210, 012002 (2010),
http://dx.doi.org/10.1088/1742-6596/210/1/012002
[6] A. Thilagam and J. Singh, Generation rate of 2D excitons in
quantum wells, J. Lumin.
55, 11–16 (1993),
http://dx.doi.org/10.1016/0022-2313(93)90078-2
[7] C. Piermarocchi, F. Tassone, V. Savona, A. Quattropani, and
P. Schwendimann, Nonequilibrium dynamics of free quantum-well
excitons in time-resolved photoluminescence, Phys. Rev. B
53,
15834–15841 (1996),
http://dx.doi.org/10.1103/PhysRevB.53.15834
[8] C. Piermarocchi, F. Tassone, V. Savona, A. Quattropani, and
P. Schwendimann, Exciton formation rates in GaAs/Al
xGa
1-xAs
quantum wells, Phys. Rev. B
55, 1333–1336 (1997),
http://dx.doi.org/10.1103/PhysRevB.55.1333
[9] J. Feldmann, G. Peter, E.O. Göbel, P. Dawson, K. Moore, C.
Foxon, and R.J. Elliott, Linewidth dependence of radiative
exciton lifetimes in quantum wells, Phys. Rev. Lett.
59,
2337–2340 (1987),
http://dx.doi.org/10.1103/PhysRevLett.59.2337
[10] M. Gurioli, A. Vinattieri, M. Colocci, C. Deparis, J.
Massies, G. Neu, A. Bosacchi, and S. Franchi, Temperature
dependence of the radiative and nonradiative recombination time
in GaAs/Al
xGa
1-xAs
quantum-well structures, Phys. Rev. B
44, 3115–3124
(1991),
http://dx.doi.org/10.1103/PhysRevB.44.3115
[11] J. Martinez-Pastor, A. Vinattieri, L. Carraresi, M.
Colocci, Ph. Roussignol, and G. Weimann, Temperature dependence
of exciton lifetimes in GaAs/Al
xGa
1-xAs
single quantum wells, Phys. Rev. B
47, 10456–10460
(1993),
http://dx.doi.org/10.1103/PhysRevB.47.10456
[12] R. Eccleston, B.F. Feuerbacher, J. Kuhl, W.W. Rühle, and K.
Ploog, Density-dependent exciton radiative lifetimes in GaAs
quantum wells, Phys. Rev. B
45, 11403–11406 (1992),
http://dx.doi.org/10.1103/PhysRevB.45.11403
[13] V. Srinivas, J. Hryniewicz, Y.J. Chen, and C.E.C. Wood,
Intrinsic linewidths and radiative lifetimes of free excitons in
GaAs quantum wells, Phys. Rev. B
46, 10193–10196 (1992),
http://dx.doi.org/10.1103/PhysRevB.46.10193
[14] B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and
D.S. Katzer, Enhanced radiative recombination of free excitons
in GaAs quantum wells, Phys. Rev. Lett.
67, 2355–2358
(1991),
http://dx.doi.org/10.1103/PhysRevLett.67.2355
[15] A. Vinattieri, J. Shah, T.C. Damen, D.S. Kim, L.N.
Pfeiffer, M.Z. Maialle, and L.J. Sham, Exciton dynamics in GaAs
quantum wells under resonant excitation, Phys. Rev. B
50,
10868–10879 (1994),
http://dx.doi.org/10.1103/PhysRevB.50.10868
[16] E. Hanamura, Rapid radiative decay and enhanced optical
nonlinearity of excitons in a quantum well, Phys. Rev. B
38,
1228–1234 (1988),
http://dx.doi.org/10.1103/PhysRevB.38.1228
[17] L.C. Andreani, F. Tassone, and F. Bassani, Radiative
lifetime of free excitons in quantum wells, Solid State Commun.
77, 641–645 (1991),
http://dx.doi.org/10.1016/0038-1098(91)90761-J
[18] D.S. Citrin, Radiative lifetimes of excitons in quantum
wells: Localization and phase-coherence effects, Phys. Rev. B
47,
3832–3841 (1993),
http://dx.doi.org/10.1103/PhysRevB.47.3832
[19] K. Muraki, Y. Takahashi, A. Fujiwara, S. Fukatsu, and Y.
Shiraki, Enhancement of free-to-bound transitions due to
resonant electron capture in Be-doped AlGaAs/GaAs quantum wells,
Solid State Electron.
37, 1247–1250 (1994),
http://dx.doi.org/10.1016/0038-1101(94)90400-6
[20] G.A. Balchin, L.M. Smith, A. Petrou, and B.D. McCombe,
Time-resolved polarized photoluminescence spectroscopy of
confined donors in GaAs/Al
xGa
1-xAs
quantum wells, Superlattices Microstruct.
18, 291–296
(1995),
http://dx.doi.org/10.1006/spmi.1995.1114
[21] J. Kundrotas, A. Čerškus, G. Valušis, E.H. Linfield, E.
Johannessen, and A. Johannessen, Dynamics of free carriers –
neutral impurity related optical transitions in Be and Si
δ-doped
GaAs/AlAs multiple quantum wells: Fractional-dimensional space
approach, Lith. J. Phys.
54, 233–243 (2014),
http://dx.doi.org/10.3952/physics.v54i4.3012
[22] J.P. Bergman, P.O. Holtz, B. Monemar, M. Sundaram, J.L.
Merz, and A.C. Gossard, Decay measurements of free- and
bound-exciton recombination in doped GaAs/Al
xGa
1-xAs
quantum wells, Phys. Rev. B
43, 4765–4770 (1991),
http://dx.doi.org/10.1103/PhysRevB.43.4765
[23] C.I. Harris, B. Monemar, H. Kalt, P.O. Holtz, M. Sundaram,
J.L. Merz, and A.C. Gossard, Exciton dynamics in GaAs/Al
xGa
1-xAs
doped quantum wells, Phys. Rev. B
50, 18367–18374
(1994),
http://dx.doi.org/10.1103/PhysRevB.50.18367
[24] T. Matsusue and H. Sakaki, Radiative recombination
coefficient of free carriers in GaAs-AlGaAs quantum wells and
its dependence on temperature, Appl. Phys. Lett.
50,
1429–1431 (1987),
http://dx.doi.org/10.1063/1.97844
[25] P.J. Bishop, M.E. Daniels, B.K. Ridley, and K. Woodbridge,
Radiative recombination in GaAs/Al
xGa
1-xAs
quantum wells, Phys. Rev. B
45, 6686–6691 (1992),
http://dx.doi.org/10.1103/PhysRevB.45.6686
[26] J.W. Orton, P. Dawson, D.E. Lacklison, T.S. Cheng, and C.T.
Foxon, Recombination lifetime measurements in AlGaAs/GaAs
quantum well structures, Semicond. Sci. Technol.
9,
1616–1622 (1994),
http://dx.doi.org/10.1088/0268-1242/9/9/008
[27] N.F. Mott,
Metal-Insulator Transitions, 2nd ed.
(Taylor & Francis, London, 1990),
http://www.amazon.co.uk/Metal-Insulator-Transitions-Nevill-Mott/dp/0850667836/
[28] J. Kundrotas, A. Čerškus, G. Valušis, M. Lachab, S.P.
Khanna, P. Harrison, and E.H. Linfield, Radiative recombination
spectra of
p-type
δ-doped GaAs/AlAs multiple
quantum wells near the Mott transition, J. Appl. Phys.
103,
123108 (2008),
http://dx.doi.org/10.1063/1.2943262
[29] J. Kundrotas, A. Čerškus, G. Valušis, L.H. Li, E.H.
Linfield, A. Johannessen, and E. Johannessen, Light emission
lifetimes in
p-type
δ-doped GaAs/AlAs multiple
quantum wells near the Mott transition, J. Appl. Phys.
112,
043105 (2012),
http://dx.doi.org/10.1063/1.4745893
[30] A. Čerškus, J. Kundrotas, G. Valušis, P. Harrison, S.
Khanna, and E. Linfield, Formation of low energy tails in
silicon
δ-doped GaAs/AlAs multiple quantum wells, Proc.
SPIE
6596, 659613 (2007),
http://dx.doi.org/10.1117/12.726489
[31] J. Kundrotas, A. Čerškus, S. Ašmontas, G. Valušis, B.
Sherliker, M.P. Halsall, M.J. Steer, E. Johannessen, and P.
Harrison, Excitonic and impurity-related optical transitions in
Be
δ-doped GaAs/AlAs multiple quantum wells:
Fractional-dimensional space approach, Phys. Rev. B
72,
235322 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.235322
[32] J. Kundrotas, A. Čerškus, G. Valušis, A. Johannessen, E.
Johannessen, P. Harrison, and E.H. Linfield, Impurity-related
photoluminescence line shape asymmetry in GaAs/AlAs multiple
quantum wells: Fractional-dimensional space approach, J. Appl.
Phys.
107, 093109 (2010),
http://dx.doi.org/10.1063/1.3342673
[33] H.W. Yoon, D.R. Wake, and J.P. Wolfe, Effect of
exciton-carrier thermodynamics on the GaAs quantum well
photoluminescence, Phys. Rev. B
54, 2763–2774 (1996),
http://dx.doi.org/10.1103/PhysRevB.54.2763