NETIESIOGINIŲ TARPJUOSTINIŲ
ŠUOLIŲ ĮTAKA TERAHERCINIAM LAIDUMUI „DEKORUOTUOSE“
DVISLUOKSNIO GRAFENO HETERODARINIUOSE
References
/
Nuorodos
[1] V. Ryzhii, M.
Ryzhii, and T. Otsuji, Negative dynamic conductivity of graphene
with optical pumping, J. Appl. Phys.
101, 083114 (2007),
http://dx.doi.org/10.1063/1.2717566
[2] M. Ryzhii and V. Ryzhii, Injection and population inversion
in electrically induced p–n junction in graphene with split
gates, Jpn. J. Appl. Phys.
46, L151–L153 (2007),
http://dx.doi.org/10.1143/JJAP.46.L151
[3] V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, Toward the
creation of terahertz graphene injection laser, J. Appl. Phys.
110,
094503 (2011),
http://dx.doi.org/10.1063/1.3657853
[4] V. Ya. Aleshkin, A.A. Dubinov, and V. Ryzhii, Terahertz
laser based on optically pumped graphene: model and feasibility
of realization, JETP Lett.
89, 63–67 (2009),
http://dx.doi.org/10.1134/S0021364009020039
[5] S. Boubanga-Tombet, S. Chan, A. Satou, T. Otsuji, and V.
Ryzhii, Ultrafast carrier dynamics and terahertz emission in
optically pumped graphene at room temperature, Phys. Rev. B
85,
035443 (2012),
http://dx.doi.org/10.1103/PhysRevB.85.035443
[6] T. Otsuji, S. Boubanga-Tombet, A. Satou, H. Fukidome, M.
Suemitsu, E. Sano, V. Popov, M. Ryzhii, and V. Ryzhii,
Graphene-based devices in terahertz science and technology, J.
Phys. D
45, 303001 (2012),
http://dx.doi.org/10.1088/0022-3727/45/30/303001
[7] T. Li, L. Luo, M. Hupalo, J. Zhang, M.C. Tringides, J.
Schmalian, and J. Wang, Femtosecond population inversion and
stimulated emission of dense Dirac fermions in graphene, Phys.
Rev. Lett.
108, 167401 (2012),
http://dx.doi.org/10.1103/PhysRevLett.108.167401
[8] Y. Takatsuka, K. Takahagi, E. Sano, V. Ryzhii, and T.
Otsuji, Gain enhancement in graphene terahertz amplifiers with
resonant structures, J. Appl. Phys.
112, 033103 (2012),
http://dx.doi.org/10.1063/1.4742998
[9] T. Watanabe, T. Fukushima, Y. Yabe, S.A. Boubanga Tombet, A.
Satou, A.A. Dubinov, V.Ya Aleshkin, V. Mitin, V. Ryzhii, and T.
Otsuji, The gain enhancement effect of surface plasmon
polaritons on terahertz stimulated emission in optically pumped
monolayer graphene, New J. Phys.
15, 075003 (2013),
http://dx.doi.org/10.1088/1367-2630/15/7/075003
[10] T. Winzer, E. Maric, and A. Knorr, Microscopic mechanism
for transient population inversion and optical gain in graphene,
Phys. Rev. B
87, 165413 (2013),
http://dx.doi.org/10.1103/PhysRevB.87.165413
[11] I. Gierz, J.C. Petersen, M. Mitrano, C. Cacho, I.C. Edmond
Turcu, E. Springate, A. Stohr, A. Kohler, U. Starke, and A.
Cavalleri, Snapshots of non-equilibrium Dirac carrier
distributions in graphene, Nat. Mater.
12, 1119–1124
(2013),
http://dx.doi.org/10.1038/nmat3757
[12] S. Kar, D.R. Mohapatra, E. Freysz, and A.K. Sood, Tuning
photoinduced terahertz conductivity in monolayer graphene:
Optical-pump terahertz-probe spectroscopy, Phys. Rev. B
90,
165420 (2014),
http://dx.doi.org/10.1103/PhysRevB.90.165420
[13] R.R. Hartmann, J. Kono, and M.E. Portnoi, Terahertz science
and technology of carbon nanomaterials, Nanotechnology
25,
322001 (2014),
http://dx.doi.org/10.1088/0957-4484/25/32/322001
[14] T. Otsuji, S. Boubanga-Tombet, A. Satou, M. Suemitsu, and
V. Ryzhii, Spectroscopy study on ultrafast carrier dynamics and
terahertz amplified stimulated emission in optically pumped
graphene, J. Infrared Millim. Terahertz Waves
33,
825–838 (2012),
http://dx.doi.org/10.1007/s10762-012-9908-8
[15] I. Gierz, M. Mitrano, J.C. Petersen, C. Cacho, I.C.E.
Turcu, E. Springate, A. Støhr, A. Køhler, U. Starke, and A.
Cavalleri, Population inversion in monolayer and bilayer
graphene, J. Phys. Cond. Mat.
27, 164204 (2015),
http://dx.doi.org/10.1088/0953-8984/27/16/164204
[16] A.A. Dubinov, V. Ya. Aleshkin, M. Ryzhii, T. Otsuji, and V.
Ryzhii, Terahertz laser with optically pumped graphene layers
and Fabry–Perot resonator, Appl. Phys. Express
2, 092301
(2009),
http://dx.doi.org/10.1143/APEX.2.092301
[17] V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A.A. Dubinov,
and V.Ya. Aleshkin, Feasibility of terahertz lasing in optically
pumped epitaxial multiple graphene layer structures, J. Appl.
Phys.
106, 084507 (2009),
http://dx.doi.org/10.1063/1.3247541
[18] V. Ryzhii, A.A. Dubinov, T. Otsuji, V. Mitin, and M.S.
Shur, Terahertz lasers based on optically pumped multiple
graphene structures with slot-line and dielectric waveguides, J.
Appl. Phys.
107, 054505 (2010),
http://dx.doi.org/10.1063/1.3327212
[19] F. Rana, Graphene terahertz plasmon oscillator, IEEE Trans.
Nanotechnol.
7, 91–99 (2008),
http://dx.doi.org/10.1109/TNANO.2007.910334
[20] A.A. Dubinov, V.Ya. Aleshkin, V. Mitin, T. Otsuji, and V.
Ryzhii, Terahertz surface plasmons in optically pumped graphene
structures, J. Phys. Condens. Matter.
23, 145302 (2011),
http://dx.doi.org/10.1088/0953-8984/23/14/145302
[21] V.V. Popov, O.V. Polischuk, A.R. Davoyan, V. Ryzhii, T.
Otsuji, and M.S. Shur, Plasmonic terahertz lasing in an array of
graphene nanocavities, Phys. Rev. B
86, 195437 (2012),
http://dx.doi.org/10.1103/PhysRevB.86.195437
[22] A. Tredicucci and M.S. Vitiello, Device concepts for
graphene-based terahertz photonics, IEEE J. Sel. Top. Quantum
Electron.
20, 8500109 (2014),
http://dx.doi.org/10.1109/JSTQE.2013.2271692
[23] D. Svintsov, V. Ryzhii, and T. Otsuji, Negative dynamic
Drude conductivity in pumped graphene, Appl. Phys. Express
7,
115101 (2014),
http://dx.doi.org/10.7567/APEX.7.115101
[24] D. Svintsov, T. Otsuji, V. Mitin, M.S. Shur, and V. Ryzhii,
Negative terahertz conductivity in disordered graphene bilayers
with pupulation inversion, Appl. Phys. Lett.
106, 113501
(2015),
http://dx.doi.org/10.1063/1.4915314
[25] J. Požela,
Physics of High-Speed Transistors
(Plenum Press, New York, 1993),
http://dx.doi.org/10.1007/978-1-4899-1242-8
[26] A. Shik,
Quantum Wells: Physics and Electronics of
Two-Dimensional Systems (World Scientific, Singapore,
1997),
http://dx.doi.org/10.1142/3608
[27] T. Stauber, G. Gomez-Santos, and F. Javier Garcia de Abajo,
Extraordinary absorption of decorated undoped graphene, Phys.
Rev. Lett.
112, 077401 (2014),
http://dx.doi.org/10.1103/PhysRevLett.112.077401
[28] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M.
Bernechea, F.P. Garcia de Arquer, F. Gatti, and F.H.L. Koppens,
Hybrid graphene quantum dot phototransistors with ultrahigh
gain, Nature Nanotechnol.
7, 363–368 (2012),
http://dx.doi.org/10.1038/nnano.2012.60
[29] E. McCann, D.S.L. Abergel, and V.I. Fal’ko, The low energy
electronic band structure of bilayer, Eur. Phys. J. Special
Topics
148, 91–103 (2007),
http://dx.doi.org/10.1140/epjst/e2007-00229-1
[30] L.M. Zhang, Z.Q. Li, D.N. Basov, M.M. Fogler, Z. Hao, and
M.C. Martin, Determination of the electronic structure of
bilayer graphene from infrared spectroscopy, Phys, Rev. B
78,
235408 (2008),
http://dx.doi.org/10.1103/PhysRevB.78.235408
[31] L.A. Falkovsky and S.S. Pershoguba, Optical far-infrared
properties of a graphene monolayer and multilayer, Phys. Rev. B
76, 1534104 (2007),
http://dx.doi.org/10.1103/PhysRevB.76.153410
[32] E.H. Hwang and S. Das Sarma, Screening, Kohn anomaly,
Friedel oscillation, and RKKY interaction in bilayer graphene,
Phys. Rev. Lett.
101, 156802 (2008),
http://dx.doi.org/10.1103/PhysRevLett.101.156802
[33] L.D. Landau and E.M. Lifshitz,
Electrodynamics of
Continuous Media (Pergamon Press, Oxford, 1960),
http://www.amazon.co.uk/Electrodynamics-Continuous-Media-Theoretical-Physics/dp/0750626348/