[PDF]    http://dx.doi.org/10.3952/physics.v55i4.3233

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 342351 (2015)


NEW PERSPECTIVES FOR PHOTOELECTRIC PHENOMENA
Igor Lashkevycha, Oleg Yu. Titovb, and Yuri G. Gurevichc
aInstituto Politécnico Nacional, UPIITA, Av. IPN, No. 2580, col. La Laguna Ticoman, del. Gustavo A. Madero, 07340 Mexico, D. F., Mexico
E-mail: i32555@gmail.com
bInstituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, 07730 Mexico, D. F., Mexico
E-mail: oleg.titov@gmail.com
cDepartamento de Física, CINVESTAV-IPN, Apdo Postal, 14-740, 07000 Mexico, D. F., Mexico
E-mail: gurevich@fis.cinvestav.mx

Received 31 August 2015; accepted 29 September 2015

The functioning of the solar cells (and photoelectric phenomena in general) relies on the photo-generation of carriers in p–n junctions and their subsequent recombination in the quasi-neutral regions. A number of basic issues concerning the physics of the operation of solar cells still remain obscure. This paper reports on some unsolved basic problems, namely: a model of the recombination processes that does not contradict Maxwell’s equations; boundary conditions; the role played by space charges in the transport phenomena, and the formation of quasi-neutral regions under the presence of nonequilibrium photo-generated carriers. In this work, a new formulation of the theory that explains the underlying physical phenomena involved in the generation of a photo-e.m.f. is presented.
Keywords: photoelectric phenomena, solar cells, Dember effect, transport equations, recombination, nonequilibrium
carriers
PACS: 72.20.Jv; 72.10.Bg; 78.56.-a

NAUJOS FOTOELEKTRONINIŲ REIŠKINIŲ PERSPEKTYVOS

Igor Lashkevycha, Oleg Yu. Titovb, Yuri G. Gurevichc
aNacionalinis politechnikos institutas, Meksikas, Meksika
bMeksikos naftos institutas, Meksikas, Meksika
cCINVESTAV-IPN Fizikos departamentas, Meksikas, Meksika

References / Nuorodos

[1] J. Pozhela, Plasma and Current Instability in Semiconductors (Nauka, Moscow, 1977) [in Russian], English translation
http://www.sciencedirect.com/science/book/9780080250489
[2] V. Bareikis, A. Matulionis, and J. Požela, Diffusion of Hot Electrons (Mokslas, Vilnius, 1981) [in Russian]
[3] Physics of High-Speed Transistors, ed. J. Požela (Springer-Verlag, Berlin, 1993),
http://www.springer.com/gp/book/9780306446191
[4] J. Požela, K. Požela, V. Jucienė, and A. Shkolnik, Hot electron transport in heterostructures, Semicond. Sci. Technol. 26(1), 014025-1–5 (2011),
http://dx.doi.org/10.1088/0268-1242/26/1/014025
[5] S. Ašmontas, Electrogradient Phenomena in Semiconductors (Mokslas, Vilnius, 1984) [in Russian]
[6] S. Ašmontas, K. Repšas, and J. Požela, Dember effect in high electric microwave fields, Lith. J. Phys. 10, 897–901 (1970) [in Russian]
[7] P.T. Landsberg, Recombination in Semiconductors (Cambridge University, Cambridge, 1991),
http://dx.doi.org/10.1002/adma.19930050123
[8] I.N. Volovichev, G.N. Logvinov, O.Yu. Titov, and Yu.G. Gurevich, Recombination and lifetimes of charge carriers in semiconductors, J. Appl. Phys. 95(8), 4494–4496 (2004),
http://dx.doi.org/10.1063/1.1669074
[9] Yu.G. Gurevich and I.N. Volovichev, Forgotten mechanism of nonlinearity in the theory of hot electrons, Phys. Rev. B 60(11), 7715–7717 (1999),
http://dx.doi.org/10.1103/PhysRevB.60.7715
[10] L. Kronik and Y. Shapira, Surface photovoltage phenomena: theory, experiment, and applications, Surf. Sci. Rep. 37, 1–206 (1999),
http://dx.doi.org/10.1016/S0167-5729(99)00002-3
[11] W.M. Saslow, What happens when you leave the car lights on overnight: violation of local electroneutrality in slow, steady discharge of a lead–acid cell, Phys. Rev. Lett. 76(25), 4849–4852 (1996),
http://dx.doi.org/10.1103/PhysRevLett.76.4849
[12] C.E. Korman and I.D. Mayergoyz, A globally convergent algorithm for the solution of the steady-state semiconductor device equations, J. Appl. Phys. 68(3), 1324–1334 (1990),
http://dx.doi.org/10.1063/1.346702
[13] A. Konin, Anomalous temperature distribution created in a semiconductor by strongly absorbed light, Semicond. Sci. Technol. 18, L17–20 (2003),
http://dx.doi.org/10.1088/0268-1242/18/4/101
[14] M. Krcmar and W. Saslow, Exact surface solutions for semiconductors: The Dember effect and partial currents, Phys. Rev. B 65(23), 233313 (2002),
http://dx.doi.org/10.1103/PhysRevB.65.233313
[15] Yu.G. Gurevich, J.E. Velazquez-Perez, G. Espejo-Lopez, I.N. Volovichev, and O.Yu. Titov, Transport of nonequilibrium carriers in bipolar semiconductors, J. Appl. Phys. 101(2), 023705-1–8 (2007),
http://dx.doi.org/10.1063/1.2424502
[16] Yu.G. Gurevich, G.N. Logvinov, J.E. Velazquez, and O.Yu. Titov, Transport and recombination in solar cells: new perspectives, Sol. Energ. Mat. Sol. C 91(15, 16), 1408–1411 (2007),
http://dx.doi.org/10.1016/j.solmat.2007.03.006
[17] J.N. Chazalviel, Coulomb Screening by Mobile Charges (Birkhauser, Boston, 1999),
http://www.springer.com/us/book/9780817639501
[18] S.R. in’t Hout, Quasineutrality in semiconductors, J. Appl. Phys. 79(11), 8435–8444 (1996),
http://dx.doi.org/10.1063/1.362518
[19] A. Sitenko and V. Malnev, Plasma Physics Theory (Chapman & Hall, London, 1995),
http://www.amazon.co.uk/Plasma-Physics-Theory-Applied-Mathematics/dp/0412567903/
[20] K. Seeger, Semiconductor Physics (Springer, Berlin, 1989),
http://dx.doi.org/10.1007/978-3-662-02576-5
[21] O.Yu. Titov, J. Giraldo, and Yu.G. Gurevich, Boundary conditions in an electric current contact, Appl. Phys. Lett. 80(17), 3108–3110 (2002),
http://dx.doi.org/10.1063/1.1473875
[22] I.N. Volovichev, J.E. Velazquez-Perez, and Yu.G. Gurevich, Transport boundary condition for semiconductor structures, Solid State Electron. 52(11), 1703–1709 (2008),
http://dx.doi.org/10.1016/j.sse.2008.04.037
[23] I.N. Volovichev, J.E. Velazquez-Perez, and Yu.G. Gurevich, Transport boundary conditions for solar cells, Sol. Energ. Mat. Sol. C 93(1), 6–10 (2009),
http://dx.doi.org/10.1016/j.solmat.2008.01.001
[24] M.A. Green, Thin-film solar cells: review of materials, technologies and commercial status, J. Mater. Sci. Mater. Electron. 18(1), S15–19 (2007),
http://dx.doi.org/10.1007/s10854-007-9177-9
[25] H. Fröhlich, Phys. Zs. Sowjet. 8, 501 (1935)
[26] J. Frenkel, Conduction in poor electronic conductors, Nature 132(3330), 312–313 (1933),
http://dx.doi.org/10.1038/132312a0
[27] J. Frenkel, Theory of some photoelectric and photomagnetoelectric phenomena in semiconductors, Phys. Zs. Sowjet. 8, 185–203 (1935)
[28] L. Landau and E. Lifshits, On the theory of the photoelectromotive force in semiconductors, Phys. Zs. Sowjet. 9, 477–486 (1936)
[29] Yu.G. Gurevich and A.V. Meriuts, Dember effect: Problems and solutions, Phys. Lett. A 377, 2673–2675 (2013),
http://dx.doi.org/10.1016/j.physleta.2013.08.003
[30] A.V. Meriuts and Yu.G. Gurevich, Novel approach to the Dember effect, Ann. Phys. (Berlin) 526(11–12), 533–540 (2014),
http://dx.doi.org/10.1002/andp.201400117
[31] A. Reklaitis, Terahertz emission from InAs induced by photo-Dember effect: Hydrodynamic analysis and Monte Carlo simulations, J. Appl. Phys. 108(5), 053102-1–9 (2010),
http://dx.doi.org/10.1063/1.3467526
[32] I. Volovichev, New non-linear photovoltaic effect in uniform bipolar semiconductor, J. Appl. Phys. 116(19), 193701 (2014),
http://dx.doi.org/10.1063/1.4901871
[33] I.N. Volovichev, Nonuniform current-carrier mobility-induced bulk photovoltaic effect in bounded semiconductors, Phys. Status Solidi B 252(8), 1804–1809 (2015),
http://dx.doi.org/10.1002/pssb.201552008
[34] J. Singh, Semiconductor Devices: Basic Principles (Wiley, New York, 2000),
http://www.wiley.com/WileyCDA/WileyTitle/productCd-047136245X.html
[35] A. Luque and S. Hegedus, Handbook of Photo-voltaic Science and Engineering (J. Wiley & Sons, Chichester, 2003),
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470721693.html
[36] Y. Gurevich and M. Melendez, Fenomenos de Contacto y sus Aplicaciones en Celdas Solares (Fondo de Cultura Economica, Mexico, 2010),
http://www.fondodeculturaeconomica.com/Librerias/Detalle.aspx?ctit=008244LE
[37] Sentaurus Device User Guide (Synopsys, Inc., Mountain View, CA, 2009),
[PDF]
[38] R.B. Bergmann, Crystalline Si thin-film solar cells: a review, Appl. Phys. A 69(2), 187–194 (1999),
http://dx.doi.org/10.1007/s003390050989
[39] J.E. Velázquez-Pérez and Yu.G. Gurevich, in: Proceedings of 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion (Valencia, Spain, 2010) pp. 539–544,
http://dx.doi.org/10.4229/25thEUPVSEC2010-1DV.2.71
[40] L.D. Landau, E.M. Liftshitz, and L.P. Pitaevskii, Electrodynamics of Continuous Media, Vol. 8 (Pergamon Press, New York, 1984),
https://archive.org/details/ElectrodynamicsOfContinuousMedia
[41] Yu.G. Gurevich, G.N. Logvinov, I.N. Volovichev, G. Espejo, O.Yu. Titov, and A. Meriuts, The role of non-equilibrium carriers in the formation of thermo-e.m.f. in bipolar semiconductors, Phys. Stat. Sol. (B) 231, 278–293 (2002),
http://dx.doi.org/10.1002/1521-3951(200205)231:1<278::AIDPSSB278>3.0.CO;2-5
[42] R.F. Smith, Semiconductors (Cambridge University Press, Cambridge, 1961)
[43] V.L. Bonch-Bruevich and S.G. Kalashnikov, Physics of Semiconductors (VEB Deutscher Verlag der Wissen-Schaften, Berlin, 1982)
[44] Taurus Medici User Guide, Version Y-2006.06 (Synopsys Inc., Mountain View, CA, 2003)
[45] C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer, Vienna, 1989),
http://www.springer.com/us/book/9783211821107
[46] F.G. Bass, V.S. Bochkov, and Yu.G. Gurevich, Electrons and Phonons in Bounded Semiconductors (Nauka, Moscow, 1984) [in Russian]
[47] S.P. Kal’venas and Yu.K. Pozhela, Recombination of hot carriers through recombination centers on the surface of germanium, Sov. Phys. Solid State 7, 2836–2837 (1966)
[48] A.I. Klimovskaya and O.V. Snitko, Absorption of energy of hot electrons by semiconductor surface, JETP Lett. 7, 149–151 (1968),
http://adsabs.harvard.edu/abs/1968ZhPmR...7..194K, [PDF]