Maya Isarov, N. Grumbach, Georgy I. Maikov, Jenya Tilchin,
Youngjin Jang, Aldona Sashchiuk, and Efrat Lifshitz
ŽEMOJE TEMPERATŪROJE VYKDOMO
PADENGIMO IR GRŪDINIMO ĮTAKA CdSe/CdS BRANDUOLIO/
APVALKALO KVANTINIŲ TAŠKŲ STRUKTŪRINĖMS IR OPTINĖMS SAVYBĖMS
References
/
Nuorodos
[1] A.H. Mueller, M.A.
Petruska, M. Achermann, D.J. Werder, E.A. Akhadov, D.D. Koleske,
M.A. Hoffbauer, and V.I. Klimov, Multicolor light-emitting
diodes based on semiconductor nanocrystals encapsulated in GaN
charge injection layers, Nano Lett.
5, 1039–1044 (2005),
http://dx.doi.org/10.1021/nl050384x
[2] M.J. Bowers, J.R. McBride, and S.J. Rosenthal, White-light
emission from magic-sized cadmium selenide nanocrystals, J. Am.
Chem. Soc.
127, 15378–15379 (2005),
http://dx.doi.org/10.1021/ja055470d
[3] L.G. Wang, S.J. Pennycook, and S.T. Pantelides, The role of
the nanoscale in surface reactions: CO
2 on CdSe,
Phys. Rev. Lett.
89, 075506 (2002),
http://dx.doi.org/10.1103/PhysRevLett.89.075506
[4] J.P. Zimmer, S. Kim, S. Ohnishi, E. Tanaka, J.V. Frangioni,
and M.G. Bawendi, Size series of small indium arsenide–zinc
selenide core–shell nanocrystals and their application to
in
vivo imaging, J. Am. Chem. Soc.
128, 2526–2527
(2006),
http://dx.doi.org/10.1021/ja0579816
[5] D.L. Klein, R. Roth, A.K.L. Lim, A.P. Alivisatos, and P.L.
McEuen, A single-electron transistor made from a cadmium
selenide nanocrystal, Nature
389, 699–701 (1997),
http://dx.doi.org/10.1038/39535
[6] X.Y. Wang, L.H. Qu, J.Y. Zhang, X.G. Peng, and M. Xiao,
Surface-related emission in highly luminescent CdSe quantum
dots, Nano Lett.
3, 1103–1106 (2003),
http://dx.doi.org/10.1021/nl0342491
[7] J.J. Li, Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B.
Johnson, and X. Peng, Large-scale synthesis of nearly
monodisperse CdSe/CdS core/shell nanocrystals using air-stable
reagents via successive ion layer adsorption and reaction, J.
Am. Chem. Soc.
125, 12567–12575 (2003),
http://dx.doi.org/10.1021/ja0363563
[8] X. Peng, M.C. Schlamp, A.V. Kadavanich, and A.P. Alivisatos,
Epitaxial growth of highly luminescent CdSe/CdS core/shell
nanocrystals with photostability and electronic accessibility,
J. Am. Chem. Soc.
119, 7019–7029 (1997),
http://dx.doi.org/10.1021/ja970754m
[9] I. Mekis, D.V. Talapin, A. Kornowski, M. Haase, and H.
Weller, One-pot synthesis of highly luminescent CdSe/CdS
core/shell nanocrystals via organometallic and “greener”
chemical approaches, J. Phys. Chem. B
107, 7454–7462
(2003),
http://dx.doi.org/10.1021/jp0278364
[10] U. Banin, M. Bruchez, A.P. Alivisatos, T. Ha, S. Weiss, and
D.S. Chemla, Evidence for a thermal contribution to emission
intermittency in single CdSe/CdS core/shell nanocrystals, J.
Chem. Phys.
110, 1195–1201 (1999),
http://dx.doi.org/10.1063/1.478161
[11] B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R.
Heine, H. Mattoussi, R. Ober, K.F. Jensen, and M.G. Bawendi,
(CdSe)ZnS core–shell quantum dots: synthesis and
characterization of a size series of highly luminescent
nanocrystallites, J. Phys. Chem. B
101, 9463–9475
(1997),
http://dx.doi.org/10.1021/jp971091y
[12] M.A. Hines and P. Guyot-Sionnest, Synthesis and
characterization of strongly luminescing ZnS-capped CdSe
nanocrystals, J. Phys. Chem.
100, 468–471 (1996),
http://dx.doi.org/10.1021/jp9530562
[13] R.G. Xie, U. Kolb, J.X. Li, T. Basche, and A. Mews,
Synthesis and characterization of highly luminescent CdSe-core
CdS/Zn
0.5Cd
0.5S/ZnS multishell
nanocrystals, J. Am. Chem. Soc.
127, 7480–7488 (2005),
http://dx.doi.org/10.1021/ja042939g
[14] C.B. Murray, D.J. Norris, and M.G. Bawendi, Synthesis and
characterization of nearly monodisperse CdE (E = sulfur,
selenium, tellurium) semiconductor nanocrystallites, J. Am.
Chem. Soc.
115, 8706–8715 (1993),
http://dx.doi.org/10.1021/ja00072a025
[15] D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, and H.
Weller, Highly luminescent monodisperse CdSe and CdSe/ZnS
nanocrystals synthesized in a hexadecylamine–trioctylphosphine
oxide–trioctylphospine mixture, Nano Lett.
1, 207–211
(2001),
http://dx.doi.org/10.1021/nl0155126
[16] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A.
Kadavanich, and A.P. Alivisatos, Shape control of CdSe
nanocrystals, Nature
404, 59–61 (2000),
http://dx.doi.org/10.1038/35003535
[17] K. Boldt, N. Kirkwood, G.A. Beane, and P. Mulvaney,
Synthesis of highly luminescent and photo-stable, graded shell
CdSe/Cd
xZn
1-xS
nanoparticles by in situ alloying, Chem. Mater.
25,
4731–4738 (2013),
http://dx.doi.org/10.1021/cm402645r
[18] O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong, D.K.
Harris, H. Wei, H. Han, D. Fukumura, R.K. Jain, and M.G.
Bawendi, Compact high-quality CdSe-CdS core–shell nanocrystals
with narrow emission linewidths and suppressed blinking, Nat.
Mater.
12, 445–451 (2013),
http://dx.doi.org/10.1038/nmat3539
[19] N. Tschirner, H. Lange, A. Schliwa, A. Biermann, C.
Thomsen, K. Lambert, R. Gomes, and Z. Hens, Interfacial alloying
in CdSe/CdS heteronanocrystals: a Raman spectroscopy analysis,
Chem. Mater.
24, 311–318 (2011),
http://dx.doi.org/10.1021/cm202947n
[20] W.K. Bae, L.A. Padilha, Y. Park, H. McDaniel, I. Robel,
J.M. Pietryga, and V.I. Klimov, Controlled alloying of the
core–shell interface in CdSe/CdS quantum dots for suppression of
auger recombination, ACS Nano
7, 3411–3419 (2013),
http://dx.doi.org/10.1021/nn4002825
[21] F. Todescato, A. Minotto, R. Signorini, J.J. Jasieniak, and
R. Bozio, Investigation into the heterostructure interface of
CdSe-based core–shell quantum dots using surface-enhanced Raman
spectroscopy, ACS Nano
7, 6649–6657 (2013),
http://dx.doi.org/10.1021/nn402022z
[22] G.E. Cragg and A.L. Efros, Suppression of Auger processes
in confined structures, Nano Lett.
10, 313–317 (2010),
http://dx.doi.org/10.1021/nl903592h
[23] R. Vaxenburg and E. Lifshitz, Alloy and heterostructure
architectures as promising tools for controlling electronic
properties of semiconductor quantum dots, Phys. Rev. B
85,
075304 (2012),
http://dx.doi.org/10.1103/PhysRevB.85.075304
[24] J.I. Climente, J.L. Movilla, and J. Planelles, Auger
recombination suppression in nanocrystals with asymmetric
electron–hole confinement, Small
8, 754–759 (2012),
http://dx.doi.org/10.1002/smll.201101740
[25] W. Nan, Y. Niu, H. Qin, F. Cui, Y. Yang, R. Lai, W. Lin,
and X. Peng, Crystal structure control of zinc-blende CdSe/CdS
core/shell nanocrystals: synthesis and structure-dependent
optical properties, J. Am. Chem. Soc.,
134(48), 19685
(2012),
http://dx.doi.org/10.1021/ja306651x
[26] N. Grumbach, R.K. Capek, E. Tilchin, A. Rubin-Brusilovski,
J. Yang, Y. Ein-Eli, and E. Lifshitz, Comprehensive route to the
formation of alloy interface in core/shell colloidal quantum
dots, J. Phys. Chem. C
119, 12749–12756 (2015),
http://dx.doi.org/10.1021/acs.jpcc.5b03086
[27] V.M. Dzhagan, M.Y. Valakh, A.E. Raevskaya, A.L. Stroyuk,
S.Y. Kuchmiy, and D.R.T. Zahn, Resonant Raman scattering study
of CdSe nanocrystals passivated with CdS and ZnS, Nanotechnology
18, 285701 (2007),
http://dx.doi.org/10.1088/0957-4484/18/28/285701
[28] V.M. Dzhagan, M.Y. Valakh, A.G. Milekhin, N.A. Yeryukov,
D.R.T. Zahn, E. Cassette, T. Pons, and B. Dubertret, Raman- and
IR-active phonons in CdSe/CdS core/shell nanocrystals in the
presence of interface alloying and strain, J. Phys. Chem. C
117,
18225–18233 (2013),
http://dx.doi.org/10.1021/jp4046808
[29] K. Gong and D.F. Kelley, Lattice strain limit for uniform
shell deposition in zincblende CdSe/CdS quantum dots, J. Phys.
Chem. Lett.
6, 1559–1562 (2015),
http://dx.doi.org/10.1021/acs.jpclett.5b00566
[30] G. Zaiats, A. Shapiro, D. Yanover, Y. Kauffmann, A.
Sashchiuk, and E. Lifshitz, Optical and electronic properties of
nonconcentric PbSe/CdSe colloidal quantum dots, J. Phys. Chem.
Lett.
6, 2444–2448 (2015),
http://dx.doi.org/10.1021/acs.jpclett.5b00498
[31] A. Minotto, F. Todescato, I. Fortunati, R. Signorini, J.J.
Jasieniak, and R. Bozio, Role of core–shell interfaces on
exciton recombination in CdSe–Cd
xZn
1-xS
quantum dots, J. Phys. Chem. C
118, 24117–24126 (2014),
http://dx.doi.org/10.1021/jp506778n
[32] F. Garcia-Santamaria, S. Brovelli, R. Viswanatha, J.A.
Hollingsworth, H. Htoon, S.A. Crooker, and V.I. Klimov,
Breakdown of volume scaling in Auger recombination in CdSe/CdS
heteronanocrystals: the role of the core–shell interface, Nano
Lett.
11, 687–693 (2011),
http://dx.doi.org/10.1021/nl103801e
[33] J. Mooney, M.M. Krause, J.I. Saari, and P. Kambhampati,
Challenge to the deep-trap model of the surface in semiconductor
nanocrystals, Phys. Rev. B
87, 081201 (2013),
http://dx.doi.org/10.1103/PhysRevB.87.081201
[34] M.M. Krause, J. Mooney, and P. Kambhampati, Chemical and
thermodynamic control of the surface of semiconductor
nanocrystals for designer white light emitters, ACS Nano
7,
5922–5929 (2013),
http://dx.doi.org/10.1021/nn401383t
[35] M.R. Salvador, M.W. Graham, and G.D. Scholes,
Exciton–phonon coupling and disorder in the excited states of
CdSe colloidal quantum dots, J. Chem. Phys.
125, 184709
(2006),
http://dx.doi.org/10.1063/1.2363190
[36] T.J. Liptay, L.F. Marshall, P.S. Rao, R.J. Ram, and M.G.
Bawendi, Anomalous stokes shift in CdSe nanocrystals, Phys. Rev.
B
76, 155314 (2007),
http://dx.doi.org/10.1103/PhysRevB.76.155314