ELEKTRONŲ PERNAŠOS TŪRINIUOSE
INGAAS IR InAs KAMBARIO TEMPERATŪROJE SAVYBIŲ APŽVALGA
References
/
Nuorodos
[1]
Nanoelectronics
and Information Technology, ed. R. Waser (Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim, 2003),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527409270.html
[2] T. Suemitsu, T. Ishii, H. Yokoyama, Y. Umeda, T. Enoki, Y.
Ishii, and T. Tamamura, 30-nm-gate InAlAs/InGaAs HEMTs
lattice-matched to InP substrates, Tech. Dig. IEDM, 223–226
(1998),
http://dx.doi.org/10.1109/IEDM.1998.746339
[3] T. Suemitsu, H. Yokoyama, T. Ishii, T. Enoki, G. Meneghesso,
and E. Zanoni, 30-nm two-step recess gate InP-based
InAlAs/InGaAs HEMTs, IEEE Trans. Electron Dev.
49, 1694
(2002),
http://dx.doi.org/10.1109/TED.2002.803646
[4] K. Shinohara, Y. Yamashita, A. Endoh, I. Watanabe, K.
Hikosaka, T. Matsui, T. Mimura, and S. Hiyamizu, 547-GHz ft In
0.7Ga
0.3As-In
0.52Al
0.48As
HEMTs with reduced source and drain resistance, IEEE Electron
Device Lett.
25, 241 (2004),
http://dx.doi.org/10.1109/LED.2004.826543
[5] K. Shinohara, Y. Yamashita, A. Endoh, I. Watanabe, K.
Hikosaka, T. Mimura, S. Hiyamizu, and T. Matsui, Nanogate
InP-HEMT technology for ultrahigh-speed performance, in:
Proceedings
of 16th International Conference on Indium Phosphide and
Related Materials, IEEE Catalog 04CH37589 (Kagoshima,
Japan, 2004) p. 721,
http://dx.doi.org/10.1109/ICIPRM.2004.1442827
[6] B. Doyle, R. Arghavani, D. Barlage, M. Datta, S. Doczy, J.
Kavalieros, A. Murthy, and R. Chau, Transistor elements for 30
nm physical gate lengths and beyond, Intel Technol. J. 6, 42
(2002),
[PDF]
[7] R. Dingle, H.R. Stormer, A.C. Gossard, and W. Wiegmann,
Electron mobilities in modulation-doped semiconductor
heterojunction superlattices, J. Appl. Phys.
33, 655
(1978),
http://dx.doi.org/10.1063/1.90457
[8] T. Mimura, K. Joshin, S. Hiyamizu, K. Kikusaka, and M. Abe,
High electron mobility transistor logic, Jpn. J. Appl. Phys.
20,
L598–600 (1981),
http://dx.doi.org/10.1143/JJAP.20.L598
[9] J.H. Marsh, Effects of compositional clustering on electron
transport in In
0.53Ga
0.47As, Appl. Phys.
Lett.
41, 732 (1982),
http://dx.doi.org/10.1063/1.93658
[10] W. Knap, J. Łusakowski, F. Teppe, N. Dyakonova, and Y.
Meziani, Terahertz generation and detection by plasma waves in
nanometer gate high electron mobility transistors, Acta Phys.
Pol. A
107(1), 82 (2005),
http://przyrbwn.icm.edu.pl/APP/ABSTR/107/a107-1-9.html
[11] W. Knap, J. Lusakowski, T. Parenty, S. Bollaeret, A. Cappy,
and M. Shur, Terahertz emission by plasma waves in 60 nm gate
high electron mobility transistors, Appl. Phys. Lett.
84,
2331–2333 (2004),
http://dx.doi.org/10.1063/1.1689401
[12] M.V. Fischetti, Monte Carlo simulation of transport in
technologically significant semiconductors of the diamond and
zinc-blende structures – Part I: Homogeneous transport, IEEE
Trans. Electron Dev.
38, 634–649 (1991),
http://dx.doi.org/10.1109/16.75176
[13] T.H. Windhorn, L.W. Cook, and G.E. Stillman, The electron
velocity-field charateristic for n-In
0.53Ga
0.47As
at 300 K, IEEE Electron Device Lett.
3, 18–20 (1982),
http://dx.doi.org/10.1109/EDL.1982.25459
[14] J.L. Thobel, L. Baundry, A. Cappy, P. Bourel, and R.
Fauquembergue, Electron transport properties of strained In
xGa
1–xAs,
Appl. Phys. Lett.
56, 346–348 (1990),
http://dx.doi.org/10.1063/1.102780
[15] P. Borowik and J.L. Thobel, Improved Monte Carlo method for
the study of electron transport in degenerate semiconductors, J.
Appl. Phys.
84, 3706–3709 (1998),
http://dx.doi.org/10.1063/1.368547
[16] A. Ghosal, D. Chattopadhyay, and N.N. Purkait, Hot-electron
velocity overshoot in In
0.53Ga
0.47, Appl.
Phys. Lett.
44, 773–774 (1984),
http://dx.doi.org/10.1063/1.94913
[17] I.M. Sobol,
The Monte Carlo Method (Mir Publishers,
Moscow, 1975)
[18] C. Jacoboni and L. Reggiani, The Monte Carlo method for the
simulation of charge transport in semiconductors with
applications to covalent materials, Rev. Mod. Phys.
55,
645 (1983),
http://dx.doi.org/10.1103/RevModPhys.55.645
[19] J. Mateos, T. Gonzalez, D. Pardo, V. Hoel, and A. Cappy,
Improved Monte Carlo algorithm for the simulation of
δ-doped
AlInAs/GaInAs HEMTs, IEEE Trans. Electron Dev.
47, 250
(2000),
http://dx.doi.org/10.1109/16.817592
[20] K.F. Brennan and D.H. Park, Theoretical comparison of
electron real-space transfer in classical and quantum two
dimensional heterostructure systems, J. Appl. Phys.
65,
1156 (1989),
http://dx.doi.org/10.1063/1.343055
[21] O. Madelung,
Semiconductors: Data Handbook
(Springer, Berlin, 2003),
http://www.springer.com/us/book/9783540404880
[22] S. Adachi,
Physical Properties of III–V Semiconductor
Compounds (Wiley, New York, 1992),
http://dx.doi.org/10.1002/352760281X
[23] C. Jacoboni and P. Lugli,
The Monte Carlo Method for
Semiconductor Device Simulation (Springer-Verlag Wien,
1989),
http://dx.doi.org/10.1007/978-3-7091-6963-6
[24] G.M. Dunn, G.J. Rees, J.P.R. David, S.A. Plimmer, and D.C.
Herbert, Monte Carlo simulation of impact ionization and current
multiplication in short GaAs p
+in
+ diodes,
Semicond. Sci. Technol.
12, 111 (1997),
http://dx.doi.org/10.1088/0268-1242/12/1/019
[25] G.M. Dunn, A. Phillips, and P.J. Topham, Current
instability in power HEMTs, Semicond. Sci. Technol.
16,
562 (2001),
http://dx.doi.org/10.1088/0268-1242/16/7/306
[26] B.G. Vasallo, J. Mateos, D. Pardo, and T. González,
Influence of trapping-detrapping processes on shot noise in
nondegenerate quasiballistic transport, Semicond. Sci. Technol.
17, 440 (2002),
http://dx.doi.org/10.1088/0268-1242/17/5/306
[27] K. Kalna and A. Asenov, Gate tunnelling and impact
ionisation in sub 100 nm PHEMTs, IEICE Trans. Electron. (Special
Issue on the 2002 IEEE International Conference on Simulation of
Semiconductor Processes and Devices (SISPAD'02))
86(3),
330 (2003),
http://search.ieice.org/bin/summary.php?id=e86-c_3_330
[28] C.L. Anderson and C.R. Crowell, Threshold energies for
electron-hole pair production by impact ionization in
semiconductors, Phys. Rev. B
5, 2267 (1972),
http://dx.doi.org/10.1103/PhysRevB.5.2267
[29] W. Quade, E. Scoll, and M. Ruden, Impact ionization within
the hydrodynamic approach to semiconductor transport, Solid
State Electron.
36, 1493 (1993),
http://dx.doi.org/10.1016/0038-1101(93)90059-Y
[30] T.P. Pearsall, Impact ionization rates for electrons and
holes in Ga
0.47In
0.53As, Appl. Phys. Lett.
36, 218 (1980),
http://dx.doi.org/10.1063/1.91431
[31] F. Osaka, T. Mikawa, and T. Kanada, Impact ionization
coefficients of electrons and holes in (100)-oriented Ga
1–xIn
xAs
yP
1–y,
IEEE J. Quantum Electron.
21, 1326 (1985),
http://dx.doi.org/10.1109/JQE.1985.1072835
[32] J. Bude and K. Hess, Thresholds of impact ionization in
semiconductors, J. Appl. Phys
72, 3554 (1992),
http://dx.doi.org/10.1063/1.351434
[33] G.E. Bulman, V.M. Robbins, G.E. Stillmann, G. Hill, and
G.J. Rees, Thresholds of impact ionization in semiconductors,
IEEE Trans. Electron Dev.
32, 2454 (1985),
http://dx.doi.org/10.1109/T-ED.1985.22295
[34] D.S. Ong, K.Y. Choo, Analytical band Monte Carlo simulation
of electron impact ionization in In
0.53Ga
0.47As,
J. Appl. Phys.
96, 5649 (2004),
http://dx.doi.org/10.1063/1.1803930
[35] J.S. Ng, C.H. Tan, J.P.R. David, G. Hill, and G.J. Rees,
Thresholds of impact ionization in semiconductors, IEEE Trans.
Electron Dev.
50, 901 (2003),
http://dx.doi.org/10.1109/TED.2003.812492
[36] G. Stillmann, in:
Properties of Lattice-Matched and
Strained Indium Gallium Arsenide, ed. P. Bhattacharya
(INSPEC, London, U. K., 1993)
[37] M.P. Mikhailova, A.A. Rogachev, and I.N. Yassievich, Impact
ionization and Auger recombination in InAs, Sov. Phys. Semicond.
10(8), 866–871 (1976)
[38] K. Brennan and K. Hesse, High field transport in GaAs, InP
and InAs, Solid State Electron.
27(4), 347–357 (1984),
http://dx.doi.org/10.1016/0038-1101(84)90168-0
[39] K.F. Brennan and N.S. Mansour, Monte Carlo calculation of
electron impact ionization in bulk InAs and HgCdTe, J. Appl.
Phys.
69(11), 7844–7847 (1991),
http://dx.doi.org/10.1063/1.347516
[40] A. Krotkus and Z. Dobrovolskis,
Electrical Conductivity
of Narrow-Gap Semiconductors (Mokslas, Vilnius, 1988)
[41] L. Reggiani, Topics in Applied Physics. Hot-Electron
Transport in Semiconductors, Vol. 58 (Springer-Verlag Berlin
Heidelberg GmbH, 1985),
http://dx.doi.org/10.1007/3-540-13321-6
[42] Y. Hori, Y. Ando, Y. Miyamoto, and O. Sugino, Effect of
strain on band structure and electron transport in InAs, Solid
State Electron.
43, 1813–1816 (1999),
http://dx.doi.org/10.1016/S0038-1101(99)00126-4
[43] M.A. Hasse, N. Robbins, N. Tabatabaie, and G.E. Stillmann,
Subthreshold electron velocity-field characteristics of GaAs and
In
0.53Ga
0.47As, J. Appl. Phys.
57,
2295 (1985),
http://dx.doi.org/10.1063/1.335464
[44] J.H. Marsh, Effects of compositional clustering on electron
transport in In
0.53Ga
0.47As, Appl. Phys.
Lett.
41(8), 732–734 (1982),
http://dx.doi.org/10.1063/1.93658
[45] W.K. Ng, C.H. Tan, J.P.R. David, P.A. Houston, M. Yee, and
J.S. Ng, Temperature dependent low-field electron multiplication
in In
0.53Ga
0.47As, Appl. Phys. Lett.
83(14),
2820–2822 (2003),
http://dx.doi.org/10.1063/1.1615684
[46] M.A. Littlejohn, K.W. Kim, and H. Tian, in:
Properties
of Lattice-Matched and Strained Indium Gallium Arsenide,
ed. P. Bhattacharya (INSPEC, London, U. K., 1993) pp. 107–116
[47] V. Balynas, A. Krotkus, A. Stalnionis, A.T. Gorelionok,
N.M. Shmidt, and J.A. Tellefsen, Time-resolved, hot-electron
conductivity measurement using an electro-optic sampling
technique, Appl. Phys. Lett.
51(4), 357–360 (1990),
http://dx.doi.org/10.1007/bf00324321
[48] C.H. Tan, G.J. Rees, P.A. Houston, J.S. Ng, W.K. Ng, and
J.P.R. David, Temperature dependence of electron impact
ionisation in In
0.53Ga
0.47As, Appl. Phys.
Lett.
84, 2322 (2004),
http://dx.doi.org/10.1063/1.1691192
[49] M. Isler, Phonon-assisted impact ionization of electron in
In
0.53Ga
0.47As, Phys. Rev. B
63,
115209 (2001),
http://dx.doi.org/10.1103/PhysRevB.63.115209
[50] G. Satyanadh, R.P. Joshi, N. Abedin, and U. Singh, Monte
Carlo calculation of electron drift characteristics and
avalanche noise in bulk InAs, J. Appl. Phys.
91,
1331–1338 (2002),
http://dx.doi.org/10.1063/1.1429771
[51] L. Amer, C. Sayah, B. Bouazza, A. Guen-Bouazza, N.E.
Chabane-Sari, and C. Gontrand, Analyse du phénomène de transport
électronique dans l'InAs et le GaAs par la méthode de Monte
Carlo pour la conception d'un transistor HEMT, in:
CISTEMA'2003
(Université de Tlemcen, 2003),
[ResearchGate]
[52] T.P. Pearsall,
GaInAsP Alloy Semiconductors (John
Wiley & Sons, Chichester, 1982),
http://www.worldcat.org/title/gainasp-alloy-semiconductors/oclc/7836511
[53] V.V. Karataev, M.G. Mil'vidsky, N.S. Rytova, and V.I.
Fistui, Compensation in n-type InAs, Sov. Phys. Semicond.
11(9),
1009–1011 (1977)