Vladimir M. Aroutiounian
Received 22 September 2015; revised 5 October 2015; accepted 15
December 2015
References
/
Nuorodos
[1] N. Taguchi, A Metal
Oxide Gas Sensor, Japan Patent No. 45-38200 (1962)
[2] V.M. Aroutiounian, Microelectronic technologies for
preparation of solid-state chemical sensors, Sov. Microelectron.
20, 337–355 (1991),
[3] V. Aroutiounian, in:
Encyclopedia of Nanoscience and
Nanotechnology (CRC Press, 2014),
https://www.crcpress.com/Dekker-Encyclopedia-of-Nanoscience-and-Nanotechnology-Third-Edition-Seven/Lyshevski/9781439891346
[4] V. Aroutiounian, Hydrogen sensors, Int. Sci. J. Altern.
Energ. Ecol.
3, 21–31 (2005)
[5] V. Aroutiounian, Metal oxide hydrogen, oxygen and carbon
monoxide sensors for hydrogen setups and cells, Int. J. Hydrogen
Energ.
32, 1145–1158 (2007),
http://dx.doi.org/10.1016/j.ijhydene.2007.01.004
[6] V. Aroutiounian, in:
Semiconductor Gas Sensors
(Woodhead Publishing, 2013) pp. 408–430,
http://dx.doi.org/10.1533/9780857098665.3.408
[7] V.M. Aroutiounian, in:
Advanced Sensors for Safety and
Security, NATO Science for Peace and Security Series B:
Physics and Biophysics, Ch. 9, eds. A. Vaseashta, S.
Khudaverdyan (2012)
[8] V.M. Aroutiounian, H.V. Abovian, Z.N. Adamyan, K.R.
Movsessian, A.A. Barsegyan, and M. S. Panossian, Method of
Making Smoke Detector,
US
Patent 5382341, January 17, 1995
[9] A.Z. Adamyan, Z.N. Adamyan, and V.M. Aroutiounian, Smoke
sensor with overcoming of humidity cross-sensitivity, Sensor.
Actuator. B
93, 416–421 (2003),
http://dx.doi.org/10.1016/S0925-4005(03)00179-5
[10] G. Korotcenkov, I. Blinov, M. Ivanov, and J.R. Stetter,
Ozone sensors on the base of SnO
2 films deposited by
spray pyrolysis, Sensor. Actuator. B
120, 679–686
(2007),
http://dx.doi.org/10.1016/j.snb.2006.03.029
[11] L. Berry and J. Brunet, Oxygen influence on the interaction
mechanisms of ozone on SnO
2 sensors, Sensor.
Actuator. B
129, 450–458 (2008),
http://dx.doi.org/10.1016/j.snb.2007.07.146
[12] C.-T. Wang and M.-T. Chen, Vanadium-promoted tin oxide
semiconductor carbon monoxide gas sensors, Sensor. Actuator. B
150,
360–366 (2010),
http://dx.doi.org/10.1016/j.snb.2010.06.060
[13] T. Huebert, L. Boon-Brett, G. Black, and U. Banach,
Hydrogen sensors – A review, Sensor. Actuator. B
157,
329–352 (2011),
http://dx.doi.org/10.1016/j.snb.2011.04.070
[14] H. Gu, Zh. Wang, and Y. Hu, Hydrogen gas sensors based on
semiconductor oxide nanostructures, Sensors
12,
5517–5550 (2012),
http://dx.doi.org/10.3390/s120505517
[15] A.Z. Adamyan, Z.N. Adamyan, V.M. Aroutiounian, A.H.
Arakelyan, K.J. Touryan, and J.A. Turner, Sol–gel derived
thin-film semiconductor hydrogen gas sensor, Int. J. Hydrogen
Energ.
32, 4101–4108 (2007),
http://dx.doi.org/10.1016/j.ijhydene.2007.03.043
[16] A.Z. Adamyan, Z.N. Adamyan, and V.M. Aroutiounian, Int. J.
Hydrogen Energ.
34, 8438–8443 (2009),
http://dx.doi.org/10.1016/j.ijhydene.2009.08.001
[17] V.M. Aroutiounian, Semiconductor NO
x
sensors, Int. Sci. J. Altern. Energ. Ecology (4), 63–76 (2007),
http://isjaee.hydrogen.ru/pdf/AEE04-07_Aroutiounian.pdf
[18] V.M. Aroutiounian, Metal oxide hydrogen, oxygen and carbon
monooxide sensors, Int. Sci. J. Altern. Energ. Ecology (11),
12–22 (2006),
http://isjaee.hydrogen.ru/pdf/11_06_Aroutiounian.pdf
[19] V.M. Aroutiounian, Semiconductor metal oxide hydrocarbon
gas sensors, Int. Sci. J. Altern. Energ. Ecology (3), 33–42
(2007),
http://isjaee.hydrogen.ru/pdf/3_2007_Aroutiounian.pdf
[20] G. Sberveglieri, G. Faglia, S. Groppelli, P. Nelli, and C.
Perego, Oxygen gas sensing properties of undoped and Li-doped
SnO
2 thin films, Sensor. Actuator. B
13,
117–122 (1993),
http://dx.doi.org/10.1016/0925-4005(93)85339-C
[21] I. Sayago, J. Gutiérrez, L. Arés, J.I. Robla, M.C.
Horrillo, and J. Getino, The effect of additives in tin oxide on
the sensitivity and selectivity to NO
x and CO,
Sensor. Actuator. B
26, 19–26 (1995),
http://dx.doi.org/10.1016/0925-4005(94)01548-V
[22] G. Bher and W. Fliegel, Electrical properties and
improvement of the gas sensitivity in multipledoped SnO
2,
Sensor. Actuator. B
26(1–3), 33–37 (1995),
http://dx.doi.org/10.1016/0925-4005(94)01551-R
[23] G. Zhang and M. Liu, Effect of particle size and dopant on
properties of SnO
2-based gas sensors, Sensor.
Actuator. B
69, 144–152 (2000),
http://dx.doi.org/10.1016/S0925-4005(00)00528-1
[24] C.-T. Wang and M.-T. Chen, Vanadium-promoted tin oxide
semiconductor carbon monoxide gas sensors, Sensor. Actuator. B
150,
360–366 (2010),
http://dx.doi.org/10.1016/j.snb.2010.06.060
[25] N.V. Hieua, N.A.P. Duc, T. Trung, M.A. Tuan, and N.D.
Chien, Gas sensing properties of tin oxide doped with metal
oxides and carbon nanotubes, Sensor. Actuator. B
144,
450–456 (2010),
http://dx.doi.org/10.1016/j.snb.2009.03.043
[26] R. Ionescu, E.H. Espinosa, and R. Leghrib, Oxygen-sensing
properties of electrospun CNTs/PVAc/TiO
2 composites,
Sensor. Actuator. B
131, 174 (2008),
http://dx.doi.org/10.1016/j.snb.2007.11.001
[27] W.K. Hsu, S. Firth, P. Redlich, M. Terrones, H. Terrones,
Y.Q. Zhu, N. Grobert, A. Schilder, R.J.H. Clark, H.W. Kroto, and
D.R.M. Walton, Boron-doping effects in carbon nanotubes, J.
Mater. Chem.
10, 1425–1429 (2000),
http://dx.doi.org/10.1039/b000720j
[28] K. Hernadi, E. Ljubovic, J.W. Seo, and L. Forro, Synthesis
of MWNT-based composite materials with inorganic coating, Acta
Mater.
51, 1447–1452 (2003),
http://dx.doi.org/10.1016/S1359-6454(02)00539-6
[29] P. Berki, Z. Németh, B. Réti, O. Berkesi, A. Magrez, M.V.
Aroutiounian, L. Forró, and K. Hernadi, Preparation and
characterization of multiwalled carbon nanotube/In
2O
3
composites, Carbon
60, 266–272 (2013),
http://dx.doi.org/10.1016/j.carbon.2013.04.035
[30] S. Iijima, Helical microtubules of graphitic carbon, Nature
354, 56–58 (1991),
http://dx.doi.org/10.1038/354056a0
[31] P.J.F. Harris,
Carbon Nanotubes and Related Structures
(Cambridge University Press, Cambridge, 1999),
http://dx.doi.org/10.1017/CBO9780511605819
[32] M. Endo, S. Iijima, and M.S. Dresselhaus,
Carbon
Nanotubes (Pergamon Press, 1996),
http://store.elsevier.com/Carbon-Nanotubes/M_-Endo/isbn-9780080545530/
[33] B. Mahar, C. Laslau, R. Yip, and Y. Sun, Development of
carbon nanotube-based sensors – A review, IEEE Sens. J.
7(2),
266–284 (2007),
http://dx.doi.org/10.1109/JSEN.2006.886863
[34] T. Zhang, S. Mubeen, N.V. Myung, and M.A. Deshusses, Recent
progress in carbon nanotube-based gas sensors, Nanotechnology
19,
332001 (2008),
http://dx.doi.org/10.1088/0957-4484/19/33/332001
[35] Ch. Li, E. Thostenson, and T.-W. Chou, Sensors and
actuators based on carbon nanotubes and their composites: A
review, Compos. Sci. Technol.
68, 1227–1249 (2008),
http://dx.doi.org/10.1016/j.compscitech.2008.01.006
[36] Y. Wang and J.T.W. Yeow, A review of carbon nanotubes-based
gas sensors, J. Sensors
2009, 494904 (2009),
http://dx.doi.org/10.1155/2009/493904
[37] A. Goldoni, L. Petaccia, S. Lizzit, and R. Larciprete,
Sensing gases with carbon tubes: a review of the actual
situation, J. Phys. Condens. Matter
22, 0123001 (2010),
http://dx.doi.org/10.1088/0953-8984/22/1/013001
[38] M. Meyyappan,
Carbon Nanotubes: Science and
Applications (CRC Press, Roca Baton, Florida, 2005),
https://www.crcpress.com/Carbon-Nanotubes-Science-and-Applications/Meyyappan/9780849321115
[39] W. Li, N.D. Hoa, and D. Kim, High-performance carbon
nanotube hydrogen sensors, Sensor. Actuator. B
149,
184–188 (2010),
http://dx.doi.org/10.1016/j.snb.2010.06.002
[40] P.F. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, and H.
Dai, Toward large arrays of multiplex functionalized carbon
nanotube sensors for highly sensitive and selective molecular
detection, Nano Lett.
3, 347–351 (2003),
http://dx.doi.org/10.1021/nl034010k
[41] A. Star, T.R. Han, V. Joshi, J.-C.P. Gabriel, and G.
Grüner, Nanoelectronic carbon dioxide sensors, Adv. Mater.
16,
2049–2052 (2004),
http://dx.doi.org/10.1002/adma.200400322
[42] D.N. Huyen, N.T. Tung, T.D. Vinh, and N.D. Thien,
Synergistic effects in the gas sensitivity of polypyrrole/single
wall carbon nanotube composites, Sensors
12, 7954–7974
(2012),
http://dx.doi.org/10.3390/s120607965
[43] R. Leghrib, T. Dufour, F. Demoisson, N. Claessens, F.
Reniers, and E. Llobet, Gas sensing properties of multiwall
carbon nanotubes decorated with rhodium nanoparticles, Sensor.
Actuator. B
160, 974–980 (2011),
http://dx.doi.org/10.1016/j.snb.2011.09.014
[44] L. Valentini, C. Cantalini, I. Armentano, J.M. Kenny, L.
Lozzi, and S. Santucci, Highly sensitive and selective sensors
based on carbon nanotubes thin films for molecular detection,
Diamond Relat. Mater.
13, 1301–1305 (2004),
http://dx.doi.org/10.1016/j.diamond.2003.11.011
[45] J. Kong, M.G. Chapline, and H. Dai, Functionalized carbon
nanotubes for molecular hydrogen sensors, Adv. Mater.
13,
1384–1386 (2001),
http://dx.doi.org/10.1002/1521-4095(200109)13:18<1384::AID-ADMA1384>3.0.CO;2-8
[46] M. Penza, R. Rossi, M. Alvisi, D. Suriano, and E. Serra,
Pd-modified carbon nanotube networked layers for enhanced gas
microsensors, Thin Solid Films
520, 9590965 (2011),
http://dx.doi.org/10.1016/j.tsf.2011.04.178
[47] J. Xie and V.K. Varadan, Synthesis and characterization of
high surface area tin oxide/functionalized carbon nanotubes
composite as anode materials, Mater. Chem. Phys.
91,
274–280 (2005),
http://dx.doi.org/10.1016/j.matchemphys.2004.11.033
[48] M.H. Chen, Z.C. Huang, G.T. Wu, G.M. Zhu, J.K. You, and
Z.G. Lin, Synthesis and characterization of SnO
2–carbon
nanotube composite as anode material for lithium-ion batteries,
Mater. Res. Bull.
38, 831–836 (2003),
http://dx.doi.org/10.1016/S0025-5408(03)00063-1
[49] W. Wanga, P. Serp, P. Kalck, and J.L. Faria, Photocatalytic
degradation of phenol on MWNT and titania composite catalysts
prepared by a modified sol–gel method, Appl. Catal. B
56,
305–312 (2005),
http://dx.doi.org/10.1016/j.apcatb.2004.09.018
[50] O.K. Varghese, and P.D. Kichambre, Gas sensing
characteristics of multi-wall carbon nanotubes, Sensor.
Actuator. B
81, 32–41 (2001),
http://dx.doi.org/10.1016/S0925-4005(01)00923-6
[51] Y.-L. Liu, H.-F. Yang, Y. Yang, Z.-M. Liu, G.-L. Shen, and
R.-Q. Yu, Gas sensing properties of tin dioxide coated carbon
nanotubes, Thin Solid Films
497, 355–360 (2006),
http://dx.doi.org/10.1016/j.tsf.2005.11.018
[52] L. Zhao and L. Gao, Filling of multi-walled carbon
nanotubes with tin(IV) oxide, Carbon
42, 3251–3272
(2004),
http://dx.doi.org/10.1016/j.carbon.2004.08.009
[53] B.-Y. Wei, M.-C. Hsu, P.-G. Su, H.-M. Lin, R.-J. Wu, and
H.-J. Lai, A novel SnO
2 gas sensor doped with carbon
nanotubes operating at room temperature, Sensor. Actuator. B
101,
81–89 (2004),
http://dx.doi.org/10.1016/j.snb.2004.02.028
[54] A. Wisitsoraat, A. Tuantranont, C. Thanachayanont, V.
Patthanasettakul, and P. Singjai, Electron beam evaporated
carbon nanotubes dispersed SnO
2 thin films gas
sensor, J. Electroceram.
17, 45–47 (2006),
http://dx.doi.org/10.1007/s10832-006-9934-9
[55] S.G. Wang, Q. Zhang, D.J. Yang, P.J. Sellin, and G.F.
Zhong, Multi-walled carbon nanotube-based gas sensors for NH
3
detection, Diamond Relat. Mater.
13, 1327–1332 (2004),
http://dx.doi.org/10.1016/j.diamond.2003.11.070
[56] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K.
Cho, and H. Dai, Nanotube molecular wires as chemical sensors,
Science
287, 622–625 (2000),
http://dx.doi.org/10.1126/science.287.5453.622
[57] M. Arab, F. Berger, F. Picaud, C. Ramseyer, J. Glory, and
M. Mayne-L'Hermite, Direct growth of the multi-walled carbon
nanotubes as a tool to detect ammonia at room temperature, Chem.
Phys. Lett.
433, 175–181 (2006),
http://dx.doi.org/10.1016/j.cplett.2006.10.036
[58] E. Bekyarova, M. Davis, T. Burch, M.E. Itkis, B. Zhao, S.
Sunshine, and R.C. Haddon, Chemically functionalized
single-walled carbon nanotubes as ammonia sensors, J. Phys.
Chem. B
108, 19717–19720 (2004),
http://dx.doi.org/10.1021/jp0471857
[59] V.V. Kovalenko, A.A. Zhukova, M.N. Rumyantseva, A.M.
Gaskov, V.V. Yushchenko, I.I. Ivanova, and T. Pagnier, Surface
chemistry of nanocrystalline SnO
2: effect of thermal
treatment and additives, Sensor. Actuator. B
126, 52–55
(2006),
http://dx.doi.org/10.1016/j.snb.2006.10.047
[60] J. Kaur, S.C. Roy, and M.C. Bhatnagar, Highly sensitive SnO
2
thin film NO
2 gas sensor operating at low
temperature, Sensor. Actuator. B
96, 1090–1095 (2007),
http://dx.doi.org/10.1016/j.snb.2006.11.031
[61] Y.-D. Wang, X.-H. Wu, Q. Su, Y.-F. Li, and Z.L. Zhou,
Ammonia-sensing characteristics of Pt and SiO
2 doped
SnO
2 materials, Solid State Electron.
45,
347–350 (2001),
http://dx.doi.org/10.1016/S0038-1101(00)00231-8
[62] K.-Y. Choi, J.-S. Park, and K.-B. Park, Low power micro-gas
sensors using mixed SnO
2 nanoparticles and MWCNTs to
detect NO
2, NH
3, and xylene gases for
ubiquitous sensor network applications, Sensor. Actuator. B
150,
65–72 (2010),
http://dx.doi.org/10.1016/j.snb.2010.07.041
[63] V.M. Aroutiounian, A.Z. Adamyan, E.A. Khachaturyan, Z.N.
Adamyan, K. Hernadi, Z. Pallai, Z. Nemeth, L. Forro, and A.
Magrez, Study of the surface-ruthenated SnO
2/MWCNTs
nanocomposite thick-film gas sensors, Sensor. Actuator. B
177,
308–315 (2013),
http://dx.doi.org/10.1016/j.snb.2012.10.106
[64] V.M. Aroutiounian, V.M. Arakelyan, E.A. Khachaturyan, G.E.
Shahnazaryan, M.S. Aleksanyan, L. Forro, A. Magrez, K. Hernadi,
and Z. Nemeth, Manufacturing and investigations of i-butane
sensor made of SnO
2/multiwall-carbon-nanotube
nanocomposite, Sensor. Actuator. B
173, 890–896 (2012),
http://dx.doi.org/10.1016/j.snb.2012.04.039
[65] V. Aroutiounian, A. Adamyan, A. Sayunts, E. Khachaturyan,
A. Adamyan, K. Hernadi, Z. Nemeth, and P. Berki, Comparative
Study of VOC Sensors Based on Ruthenated MWCNT/SnO
2
Nanocomposites, Int. J. Emerg. Trends Sci. Technol.
1(8),
1309–1319 (2014),
http://ijetst.in/ems/index.php/ijetst/article/view/375/324
[66] V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, M.S.
Aleksanyan, K. Hernadi, Z. Nemeth, P. Berki, Z. Papa, Z. Toth,
and L. Forro, The ethanol sensors made from
α-Fe
2O
3
decorated with multiwall carbon nanotubes, Adv. Nano Res.
3,
1–11 (2015),
http://dx.doi.org/10.12989/anr.2015.3.1.001
[67] X. Meng, M. Ionescu, M.N. Banis, Y. Zhong, H. Liu, Y.
Zhang, S. Sun, R. Li, and X. Sun, Heterostructural coaxial
nanotubes of CNT-Fe
2O
3 via atomic layer
deposition: effects of surface functionalization and
nitrogen-doping, Nanopart. Res.
13(3), 1207–1218 (2010),
http://dx.doi.org/10.1007/s11051-010-0113-1
[68] Y. Tang, Q. Zhang, Y. Li, and H. Wang, Highly selective
ammonia sensors based on Co1–x NixFe2O4/multi-walled carbon
nanotubes nanocomposites, Sensor. Actuator. B
169,
229–234 (2012),
http://dx.doi.org/10.1016/j.snb.2012.04.073
[69] C.-L. Dai, Y.-C. Chen, C-C. Wu, and C.-F. Kuo, Cobalt oxide
nanosheet and CNT micro carbon monoxide sensor integrated with
readout circuit on chip, Sensors
10, 1753–1764 (2010),
http://dx.doi.org/10.3390/s100301753
[70] W. Li, H. Jung, N.D. Hoa, D. Kim, S.-K. Hong, and H. Kim,
Nanocomposite of cobalt oxide nanocrystals and single-walled
carbon nanotubes for a gas sensor application, Sensor. Actuator.
B
150, 160–166 (2010),
http://dx.doi.org/10.1016/j.snb.2010.07.023
[71] M. Parmar, R. Bhati, V. Prasad, and K. Rajann, Ethanol
sensing using CuO/MWNT thin film, Sensor. Actuator. B
158(1),
229–234 (2011),
http://dx.doi.org/10.1016/j.snb.2011.06.010
[72] C. Wongchoosuk, A. Wisitsoraat, D. Phokharatkul, A.
Tuantranont, and T. Kerdcharoen, Multi-walled carbon
nanotube-doped tungsten oxide thin films for hydrogen gas
sensing, Sensors
10, 7705–7715, (2010),
http://dx.doi.org/10.3390/s100807705
[73] A. Bittencourt, Felten, E.H. Espinosa, R. Ionescu, E.
Llobet, X. Correig, and J.-J. Pireaux, WO
3 films
modified with functionalized multi-wall carbon nanotubes:
morphological, composition and gas response studies, Sensor.
Actuator. B
115, 33–41 (2006),
http://dx.doi.org/10.1016/j.snb.2005.07.067
[74] N.V. Hieu, L.T.B. Thuy, and N.D. Chien, Highly sensitive
thin film NH
3 gas sensor operating at room
temperature based on SnO
2/MWCNTs composite, Sensor.
Actuator. B
129, 888–895 (2008),
http://dx.doi.org/10.1016/j.snb.2007.09.088
[75] R. Leghrib, A. Felten, J.J. Pireaux, and E.L. Llobet, Gas
sensors based on doped-CNT/SnO
2 composites for NO
2
detection at room temperature, Thin Solid Films
520,
966–970 (2011),
http://dx.doi.org/10.1016/j.tsf.2011.04.186
[76] Y. Chen, C. Zhu, and T. Wang, The enhanced ethanol sensing
properties of multi-walled carbon nanotubes/SnO
2
core/shell nanostructures, Nanotechnology
17, 3012–17
(2006),
http://dx.doi.org/10.1088/0957-4484/17/12/033
[77] J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O.
Jasek, V. Adam, and R. Kizek, in:
Carbon Nanotubes, Ch.
6, ed. A. K. Mishra (Nova Science Publishers, 2013) pp. 87–106
[78] R. Leghrib, R. Pavelko, A. Felten, and A. Vasiliev, Gas
sensors based on multiwall carbon nanotubes decorated with tin
oxide nanoclusters, Sensor. Actuator. B
145, 411–416
(2010),
http://dx.doi.org/10.1016/j.snb.2009.12.044
[79] L. Zhao, M. Choi, H.S. Kim, and S.H. Hong, The effect of
multiwalled carbon nanotube doping on the CO gas sensitivity of
SnO
2-based nanomaterials, Nanotechnology
18,
445501 (2007),
http://dx.doi.org/10.1088/0957-4484/18/44/445501
[80] A. Yang, X.M. Tao, R.X. Wang, S.C. Lee, and C. Surya, Room
temperature gas sensing properties of SnO
2/multiwall-carbon-nanotube
composite nanofibers, Appl. Phys. Lett.
91, 133110
(2007),
http://dx.doi.org/10.1063/1.2783479
[81] G. Lu, L.E. Ocola, and J. Chen, Room-temperature gas
sensing based on electron transfer between discrete tin oxide
nanocrystals and multiwalled carbon nanotubes, Adv. Mater.
21,
2487–2491 (2009),
http://dx.doi.org/10.1002/adma.200803536
[82] R.-J. Wu, J-G. Wu, M-R. Yu, T.-K. Tsai, and C.-T. Yeh,
Promotive effect of CNT on Co
3O4–SnO
2 in a
semiconductor-type CO sensor working at room temperature,
Sensor. Actuator. B
131, 306–312 (2008),
http://dx.doi.org/10.1016/j.snb.2007.11.033