[PDF]    http://dx.doi.org/10.3952/physics.v55i4.3230

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 319–329 (2015)


METAL OXIDE GAS SENSORS DECORATED WITH CARBON NANOTUBES
Vladimir M. Aroutiounian
Department of Physics of Semiconductors and Microelectronics, Scientific Centre for Semiconductor Devices and Nanotechnologies at Yerevan State University, 1 Alex Manoogian St., 0025 Yerevan, Armenia
E-mail: kisahar@ysu.am

Received 22 September 2015; revised 5 October 2015; accepted 15 December 2015

Gas sensors made from carbon nanotubes without their doping and functionalization have serious shortcomings. Analysis of physics and techniques of decoration (functionalization) of carbon nanotubes using organic polymers, doping with impurities, metallic nanoparticle/nanoclusters is carried out. The development of metal oxide nanocomposite sensors decorated with carbon nanotubes is very promising for realization of detectors of different important gases with dramatically improved response, better time characteristics and smaller consumed power.
Keywords: gas sensor, metal oxide, carbon nanotube, decoration, nanoparticle
PACS: 07.07.Df, 61.48.De, 68.43.-h,77.84.Bw

DUJŲ JUTIKLIAI IŠ METALO OKSIDŲ DEKORUOTI ANGLIES NANOVAMZDELIAIS

Vladimir M. Aroutiounian
Jerevano valstybinio universiteto Puslaidininkinių prietaisų ir nanotechnologijų mokslo centras, Jerevanas, Armėnija

References / Nuorodos

[1] N. Taguchi, A Metal Oxide Gas Sensor, Japan Patent No. 45-38200 (1962)
[2] V.M. Aroutiounian, Microelectronic technologies for preparation of solid-state chemical sensors, Sov. Microelectron. 20, 337–355 (1991),
[3] V. Aroutiounian, in: Encyclopedia of Nanoscience and Nanotechnology (CRC Press, 2014),
https://www.crcpress.com/Dekker-Encyclopedia-of-Nanoscience-and-Nanotechnology-Third-Edition-Seven/Lyshevski/9781439891346
[4] V. Aroutiounian, Hydrogen sensors, Int. Sci. J. Altern. Energ. Ecol. 3, 21–31 (2005)
[5] V. Aroutiounian, Metal oxide hydrogen, oxygen and carbon monoxide sensors for hydrogen setups and cells, Int. J. Hydrogen Energ. 32, 1145–1158 (2007),
http://dx.doi.org/10.1016/j.ijhydene.2007.01.004
[6] V. Aroutiounian, in: Semiconductor Gas Sensors (Woodhead Publishing, 2013) pp. 408–430,
http://dx.doi.org/10.1533/9780857098665.3.408
[7] V.M. Aroutiounian, in: Advanced Sensors for Safety and Security, NATO Science for Peace and Security Series B: Physics and Biophysics, Ch. 9, eds. A. Vaseashta, S. Khudaverdyan (2012)
[8] V.M. Aroutiounian, H.V. Abovian, Z.N. Adamyan, K.R. Movsessian, A.A. Barsegyan, and M. S. Panossian, Method of Making Smoke Detector,
US Patent 5382341, January 17, 1995
[9] A.Z. Adamyan, Z.N. Adamyan, and V.M. Aroutiounian, Smoke sensor with overcoming of humidity cross-sensitivity, Sensor. Actuator. B 93, 416–421 (2003),
http://dx.doi.org/10.1016/S0925-4005(03)00179-5
[10] G. Korotcenkov, I. Blinov, M. Ivanov, and J.R. Stetter, Ozone sensors on the base of SnO2 films deposited by spray pyrolysis, Sensor. Actuator. B 120, 679–686 (2007),
http://dx.doi.org/10.1016/j.snb.2006.03.029
[11] L. Berry and J. Brunet, Oxygen influence on the interaction mechanisms of ozone on SnO2 sensors, Sensor. Actuator. B 129, 450–458 (2008),
http://dx.doi.org/10.1016/j.snb.2007.07.146
[12] C.-T. Wang and M.-T. Chen, Vanadium-promoted tin oxide semiconductor carbon monoxide gas sensors, Sensor. Actuator. B 150, 360–366 (2010),
http://dx.doi.org/10.1016/j.snb.2010.06.060
[13] T. Huebert, L. Boon-Brett, G. Black, and U. Banach, Hydrogen sensors – A review, Sensor. Actuator. B 157, 329–352 (2011),
http://dx.doi.org/10.1016/j.snb.2011.04.070
[14] H. Gu, Zh. Wang, and Y. Hu, Hydrogen gas sensors based on semiconductor oxide nanostructures, Sensors 12, 5517–5550 (2012),
http://dx.doi.org/10.3390/s120505517
[15] A.Z. Adamyan, Z.N. Adamyan, V.M. Aroutiounian, A.H. Arakelyan, K.J. Touryan, and J.A. Turner, Sol–gel derived thin-film semiconductor hydrogen gas sensor, Int. J. Hydrogen Energ. 32, 4101–4108 (2007),
http://dx.doi.org/10.1016/j.ijhydene.2007.03.043
[16] A.Z. Adamyan, Z.N. Adamyan, and V.M. Aroutiounian, Int. J. Hydrogen Energ. 34, 8438–8443 (2009),
http://dx.doi.org/10.1016/j.ijhydene.2009.08.001
[17] V.M. Aroutiounian, Semiconductor NOx sensors, Int. Sci. J. Altern. Energ. Ecology (4), 63–76 (2007),
http://isjaee.hydrogen.ru/pdf/AEE04-07_Aroutiounian.pdf
[18] V.M. Aroutiounian, Metal oxide hydrogen, oxygen and carbon monooxide sensors, Int. Sci. J. Altern. Energ. Ecology (11), 12–22 (2006),
http://isjaee.hydrogen.ru/pdf/11_06_Aroutiounian.pdf
[19] V.M. Aroutiounian, Semiconductor metal oxide hydrocarbon gas sensors, Int. Sci. J. Altern. Energ. Ecology (3), 33–42 (2007),
http://isjaee.hydrogen.ru/pdf/3_2007_Aroutiounian.pdf
[20] G. Sberveglieri, G. Faglia, S. Groppelli, P. Nelli, and C. Perego, Oxygen gas sensing properties of undoped and Li-doped SnO2 thin films, Sensor. Actuator. B 13, 117–122 (1993),
http://dx.doi.org/10.1016/0925-4005(93)85339-C
[21] I. Sayago, J. Gutiérrez, L. Arés, J.I. Robla, M.C. Horrillo, and J. Getino, The effect of additives in tin oxide on the sensitivity and selectivity to NOx and CO, Sensor. Actuator. B 26, 19–26 (1995),
http://dx.doi.org/10.1016/0925-4005(94)01548-V
[22] G. Bher and W. Fliegel, Electrical properties and improvement of the gas sensitivity in multipledoped SnO2, Sensor. Actuator. B 26(1–3), 33–37 (1995),
http://dx.doi.org/10.1016/0925-4005(94)01551-R
[23] G. Zhang and M. Liu, Effect of particle size and dopant on properties of SnO2-based gas sensors, Sensor. Actuator. B 69, 144–152 (2000),
http://dx.doi.org/10.1016/S0925-4005(00)00528-1
[24] C.-T. Wang and M.-T. Chen, Vanadium-promoted tin oxide semiconductor carbon monoxide gas sensors, Sensor. Actuator. B 150, 360–366 (2010),
http://dx.doi.org/10.1016/j.snb.2010.06.060
[25] N.V. Hieua, N.A.P. Duc, T. Trung, M.A. Tuan, and N.D. Chien, Gas sensing properties of tin oxide doped with metal oxides and carbon nanotubes, Sensor. Actuator. B 144, 450–456 (2010),
http://dx.doi.org/10.1016/j.snb.2009.03.043
[26] R. Ionescu, E.H. Espinosa, and R. Leghrib, Oxygen-sensing properties of electrospun CNTs/PVAc/TiO2 composites, Sensor. Actuator. B 131, 174 (2008),
http://dx.doi.org/10.1016/j.snb.2007.11.001
[27] W.K. Hsu, S. Firth, P. Redlich, M. Terrones, H. Terrones, Y.Q. Zhu, N. Grobert, A. Schilder, R.J.H. Clark, H.W. Kroto, and D.R.M. Walton, Boron-doping effects in carbon nanotubes, J. Mater. Chem. 10, 1425–1429 (2000),
http://dx.doi.org/10.1039/b000720j
[28] K. Hernadi, E. Ljubovic, J.W. Seo, and L. Forro, Synthesis of MWNT-based composite materials with inorganic coating, Acta Mater. 51, 1447–1452 (2003),
http://dx.doi.org/10.1016/S1359-6454(02)00539-6
[29] P. Berki, Z. Németh, B. Réti, O. Berkesi, A. Magrez, M.V. Aroutiounian, L. Forró, and K. Hernadi, Preparation and characterization of multiwalled carbon nanotube/In2O3 composites, Carbon 60, 266–272 (2013),
http://dx.doi.org/10.1016/j.carbon.2013.04.035
[30] S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56–58 (1991),
http://dx.doi.org/10.1038/354056a0
[31] P.J.F. Harris, Carbon Nanotubes and Related Structures (Cambridge University Press, Cambridge, 1999),
http://dx.doi.org/10.1017/CBO9780511605819
[32] M. Endo, S. Iijima, and M.S. Dresselhaus, Carbon Nanotubes (Pergamon Press, 1996),
http://store.elsevier.com/Carbon-Nanotubes/M_-Endo/isbn-9780080545530/
[33] B. Mahar, C. Laslau, R. Yip, and Y. Sun, Development of carbon nanotube-based sensors – A review, IEEE Sens. J. 7(2), 266–284 (2007),
http://dx.doi.org/10.1109/JSEN.2006.886863
[34] T. Zhang, S. Mubeen, N.V. Myung, and M.A. Deshusses, Recent progress in carbon nanotube-based gas sensors, Nanotechnology 19, 332001 (2008),
http://dx.doi.org/10.1088/0957-4484/19/33/332001
[35] Ch. Li, E. Thostenson, and T.-W. Chou, Sensors and actuators based on carbon nanotubes and their composites: A review, Compos. Sci. Technol. 68, 1227–1249 (2008),
http://dx.doi.org/10.1016/j.compscitech.2008.01.006
[36] Y. Wang and J.T.W. Yeow, A review of carbon nanotubes-based gas sensors, J. Sensors 2009, 494904 (2009),
http://dx.doi.org/10.1155/2009/493904
[37] A. Goldoni, L. Petaccia, S. Lizzit, and R. Larciprete, Sensing gases with carbon tubes: a review of the actual situation, J. Phys. Condens. Matter 22, 0123001 (2010),
http://dx.doi.org/10.1088/0953-8984/22/1/013001
[38] M. Meyyappan, Carbon Nanotubes: Science and Applications (CRC Press, Roca Baton, Florida, 2005),
https://www.crcpress.com/Carbon-Nanotubes-Science-and-Applications/Meyyappan/9780849321115
[39] W. Li, N.D. Hoa, and D. Kim, High-performance carbon nanotube hydrogen sensors, Sensor. Actuator. B 149, 184–188 (2010),
http://dx.doi.org/10.1016/j.snb.2010.06.002
[40] P.F. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, and H. Dai, Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection, Nano Lett. 3, 347–351 (2003),
http://dx.doi.org/10.1021/nl034010k
[41] A. Star, T.R. Han, V. Joshi, J.-C.P. Gabriel, and G. Grüner, Nanoelectronic carbon dioxide sensors, Adv. Mater. 16, 2049–2052 (2004),
http://dx.doi.org/10.1002/adma.200400322
[42] D.N. Huyen, N.T. Tung, T.D. Vinh, and N.D. Thien, Synergistic effects in the gas sensitivity of polypyrrole/single wall carbon nanotube composites, Sensors 12, 7954–7974 (2012),
http://dx.doi.org/10.3390/s120607965
[43] R. Leghrib, T. Dufour, F. Demoisson, N. Claessens, F. Reniers, and E. Llobet, Gas sensing properties of multiwall carbon nanotubes decorated with rhodium nanoparticles, Sensor. Actuator. B 160, 974–980 (2011),
http://dx.doi.org/10.1016/j.snb.2011.09.014
[44] L. Valentini, C. Cantalini, I. Armentano, J.M. Kenny, L. Lozzi, and S. Santucci, Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection, Diamond Relat. Mater. 13, 1301–1305 (2004),
http://dx.doi.org/10.1016/j.diamond.2003.11.011
[45] J. Kong, M.G. Chapline, and H. Dai, Functionalized carbon nanotubes for molecular hydrogen sensors, Adv. Mater. 13, 1384–1386 (2001),
http://dx.doi.org/10.1002/1521-4095(200109)13:18<1384::AID-ADMA1384>3.0.CO;2-8
[46] M. Penza, R. Rossi, M. Alvisi, D. Suriano, and E. Serra, Pd-modified carbon nanotube networked layers for enhanced gas microsensors, Thin Solid Films 520, 9590965 (2011),
http://dx.doi.org/10.1016/j.tsf.2011.04.178
[47] J. Xie and V.K. Varadan, Synthesis and characterization of high surface area tin oxide/functionalized carbon nanotubes composite as anode materials, Mater. Chem. Phys. 91, 274–280 (2005),
http://dx.doi.org/10.1016/j.matchemphys.2004.11.033
[48] M.H. Chen, Z.C. Huang, G.T. Wu, G.M. Zhu, J.K. You, and Z.G. Lin, Synthesis and characterization of SnO2–carbon nanotube composite as anode material for lithium-ion batteries, Mater. Res. Bull. 38, 831–836 (2003),
http://dx.doi.org/10.1016/S0025-5408(03)00063-1
[49] W. Wanga, P. Serp, P. Kalck, and J.L. Faria, Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol–gel method, Appl. Catal. B 56, 305–312 (2005),
http://dx.doi.org/10.1016/j.apcatb.2004.09.018
[50] O.K. Varghese, and P.D. Kichambre, Gas sensing characteristics of multi-wall carbon nanotubes, Sensor. Actuator. B 81, 32–41 (2001),
http://dx.doi.org/10.1016/S0925-4005(01)00923-6
[51] Y.-L. Liu, H.-F. Yang, Y. Yang, Z.-M. Liu, G.-L. Shen, and R.-Q. Yu, Gas sensing properties of tin dioxide coated carbon nanotubes, Thin Solid Films 497, 355–360 (2006),
http://dx.doi.org/10.1016/j.tsf.2005.11.018
[52] L. Zhao and L. Gao, Filling of multi-walled carbon nanotubes with tin(IV) oxide, Carbon 42, 3251–3272 (2004),
http://dx.doi.org/10.1016/j.carbon.2004.08.009
[53] B.-Y. Wei, M.-C. Hsu, P.-G. Su, H.-M. Lin, R.-J. Wu, and H.-J. Lai, A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature, Sensor. Actuator. B 101, 81–89 (2004),
http://dx.doi.org/10.1016/j.snb.2004.02.028
[54] A. Wisitsoraat, A. Tuantranont, C. Thanachayanont, V. Patthanasettakul, and P. Singjai, Electron beam evaporated carbon nanotubes dispersed SnO2 thin films gas sensor, J. Electroceram. 17, 45–47 (2006),
http://dx.doi.org/10.1007/s10832-006-9934-9
[55] S.G. Wang, Q. Zhang, D.J. Yang, P.J. Sellin, and G.F. Zhong, Multi-walled carbon nanotube-based gas sensors for NH3 detection, Diamond Relat. Mater. 13, 1327–1332 (2004),
http://dx.doi.org/10.1016/j.diamond.2003.11.070
[56] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dai, Nanotube molecular wires as chemical sensors, Science 287, 622–625 (2000),
http://dx.doi.org/10.1126/science.287.5453.622
[57] M. Arab, F. Berger, F. Picaud, C. Ramseyer, J. Glory, and M. Mayne-L'Hermite, Direct growth of the multi-walled carbon nanotubes as a tool to detect ammonia at room temperature, Chem. Phys. Lett. 433, 175–181 (2006),
http://dx.doi.org/10.1016/j.cplett.2006.10.036
[58] E. Bekyarova, M. Davis, T. Burch, M.E. Itkis, B. Zhao, S. Sunshine, and R.C. Haddon, Chemically functionalized single-walled carbon nanotubes as ammonia sensors, J. Phys. Chem. B 108, 19717–19720 (2004),
http://dx.doi.org/10.1021/jp0471857
[59] V.V. Kovalenko, A.A. Zhukova, M.N. Rumyantseva, A.M. Gaskov, V.V. Yushchenko, I.I. Ivanova, and T. Pagnier, Surface chemistry of nanocrystalline SnO2: effect of thermal treatment and additives, Sensor. Actuator. B 126, 52–55 (2006),
http://dx.doi.org/10.1016/j.snb.2006.10.047
[60] J. Kaur, S.C. Roy, and M.C. Bhatnagar, Highly sensitive SnO2 thin film NO2 gas sensor operating at low temperature, Sensor. Actuator. B 96, 1090–1095 (2007),
http://dx.doi.org/10.1016/j.snb.2006.11.031
[61] Y.-D. Wang, X.-H. Wu, Q. Su, Y.-F. Li, and Z.L. Zhou, Ammonia-sensing characteristics of Pt and SiO2 doped SnO2 materials, Solid State Electron. 45, 347–350 (2001),
http://dx.doi.org/10.1016/S0038-1101(00)00231-8
[62] K.-Y. Choi, J.-S. Park, and K.-B. Park, Low power micro-gas sensors using mixed SnO2 nanoparticles and MWCNTs to detect NO2, NH3, and xylene gases for ubiquitous sensor network applications, Sensor. Actuator. B 150, 65–72 (2010),
http://dx.doi.org/10.1016/j.snb.2010.07.041
[63] V.M. Aroutiounian, A.Z. Adamyan, E.A. Khachaturyan, Z.N. Adamyan, K. Hernadi, Z. Pallai, Z. Nemeth, L. Forro, and A. Magrez, Study of the surface-ruthenated SnO2/MWCNTs nanocomposite thick-film gas sensors, Sensor. Actuator. B 177, 308–315 (2013),
http://dx.doi.org/10.1016/j.snb.2012.10.106
[64] V.M. Aroutiounian, V.M. Arakelyan, E.A. Khachaturyan, G.E. Shahnazaryan, M.S. Aleksanyan, L. Forro, A. Magrez, K. Hernadi, and Z. Nemeth, Manufacturing and investigations of i-butane sensor made of SnO2/multiwall-carbon-nanotube nanocomposite, Sensor. Actuator. B 173, 890–896 (2012),
http://dx.doi.org/10.1016/j.snb.2012.04.039
[65] V. Aroutiounian, A. Adamyan, A. Sayunts, E. Khachaturyan, A. Adamyan, K. Hernadi, Z. Nemeth, and P. Berki, Comparative Study of VOC Sensors Based on Ruthenated MWCNT/SnO2 Nanocomposites, Int. J. Emerg. Trends Sci. Technol. 1(8), 1309–1319 (2014),
http://ijetst.in/ems/index.php/ijetst/article/view/375/324
[66] V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, M.S. Aleksanyan, K. Hernadi, Z. Nemeth, P. Berki, Z. Papa, Z. Toth, and L. Forro, The ethanol sensors made from α-Fe2O3 decorated with multiwall carbon nanotubes, Adv. Nano Res. 3, 1–11 (2015),
http://dx.doi.org/10.12989/anr.2015.3.1.001
[67] X. Meng, M. Ionescu, M.N. Banis, Y. Zhong, H. Liu, Y. Zhang, S. Sun, R. Li, and X. Sun, Heterostructural coaxial nanotubes of CNT-Fe2O3 via atomic layer deposition: effects of surface functionalization and nitrogen-doping, Nanopart. Res. 13(3), 1207–1218 (2010),
http://dx.doi.org/10.1007/s11051-010-0113-1
[68] Y. Tang, Q. Zhang, Y. Li, and H. Wang, Highly selective ammonia sensors based on Co1–x NixFe2O4/multi-walled carbon nanotubes nanocomposites, Sensor. Actuator. B 169, 229–234 (2012),
http://dx.doi.org/10.1016/j.snb.2012.04.073
[69] C.-L. Dai, Y.-C. Chen, C-C. Wu, and C.-F. Kuo, Cobalt oxide nanosheet and CNT micro carbon monoxide sensor integrated with readout circuit on chip, Sensors 10, 1753–1764 (2010),
http://dx.doi.org/10.3390/s100301753
[70] W. Li, H. Jung, N.D. Hoa, D. Kim, S.-K. Hong, and H. Kim, Nanocomposite of cobalt oxide nanocrystals and single-walled carbon nanotubes for a gas sensor application, Sensor. Actuator. B 150, 160–166 (2010),
http://dx.doi.org/10.1016/j.snb.2010.07.023
[71] M. Parmar, R. Bhati, V. Prasad, and K. Rajann, Ethanol sensing using CuO/MWNT thin film, Sensor. Actuator. B 158(1), 229–234 (2011),
http://dx.doi.org/10.1016/j.snb.2011.06.010
[72] C. Wongchoosuk, A. Wisitsoraat, D. Phokharatkul, A. Tuantranont, and T. Kerdcharoen, Multi-walled carbon nanotube-doped tungsten oxide thin films for hydrogen gas sensing, Sensors 10, 7705–7715, (2010),
http://dx.doi.org/10.3390/s100807705
[73] A. Bittencourt, Felten, E.H. Espinosa, R. Ionescu, E. Llobet, X. Correig, and J.-J. Pireaux, WO3 films modified with functionalized multi-wall carbon nanotubes: morphological, composition and gas response studies, Sensor. Actuator. B 115, 33–41 (2006),
http://dx.doi.org/10.1016/j.snb.2005.07.067
[74] N.V. Hieu, L.T.B. Thuy, and N.D. Chien, Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite, Sensor. Actuator. B 129, 888–895 (2008),
http://dx.doi.org/10.1016/j.snb.2007.09.088
[75] R. Leghrib, A. Felten, J.J. Pireaux, and E.L. Llobet, Gas sensors based on doped-CNT/SnO2 composites for NO2 detection at room temperature, Thin Solid Films 520, 966–970 (2011),
http://dx.doi.org/10.1016/j.tsf.2011.04.186
[76] Y. Chen, C. Zhu, and T. Wang, The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures, Nanotechnology 17, 3012–17 (2006),
http://dx.doi.org/10.1088/0957-4484/17/12/033
[77] J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, and R. Kizek, in: Carbon Nanotubes, Ch. 6, ed. A. K. Mishra (Nova Science Publishers, 2013) pp. 87–106
[78] R. Leghrib, R. Pavelko, A. Felten, and A. Vasiliev, Gas sensors based on multiwall carbon nanotubes decorated with tin oxide nanoclusters, Sensor. Actuator. B 145, 411–416 (2010),
http://dx.doi.org/10.1016/j.snb.2009.12.044
[79] L. Zhao, M. Choi, H.S. Kim, and S.H. Hong, The effect of multiwalled carbon nanotube doping on the CO gas sensitivity of SnO2-based nanomaterials, Nanotechnology 18, 445501 (2007),
http://dx.doi.org/10.1088/0957-4484/18/44/445501
[80] A. Yang, X.M. Tao, R.X. Wang, S.C. Lee, and C. Surya, Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers, Appl. Phys. Lett. 91, 133110 (2007),
http://dx.doi.org/10.1063/1.2783479
[81] G. Lu, L.E. Ocola, and J. Chen, Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes, Adv. Mater. 21, 2487–2491 (2009),
http://dx.doi.org/10.1002/adma.200803536
[82] R.-J. Wu, J-G. Wu, M-R. Yu, T.-K. Tsai, and C.-T. Yeh, Promotive effect of CNT on Co3O4–SnO2 in a semiconductor-type CO sensor working at room temperature, Sensor. Actuator. B 131, 306–312 (2008),
http://dx.doi.org/10.1016/j.snb.2007.11.033