[PDF]    http://dx.doi.org/10.3952/physics.v55i4.3231

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 330334 (2015)


DISORDERED SMALL DEFECT CLUSTERS IN SILICON
Ernestas Žąsinas and Juozas Vidmantis Vaitkus
Institute of Applied Research, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: ernestas.zasinas@ff.vu.lt

Received 28 September 2015; revised 23 November 2015; accepted 15 December 2015

The ionizing radiation induced disordered defect clusters and their relaxation in silicon were simulated by the density functional method. It was found that a non-relaxed disordered cluster gives rise to a great number of localized states having their energy levels within the semiconductor forbidden band gap. After the relaxation, however, the density of these states significantly decreases leaving only several relatively shallow donor and acceptor state levels that may contribute to trapping of free carriers and shrinkage of an effective band gap.
Keywords: radiation clusters, disordered semiconductor, local levels
PACS: 61.72.J-, 29.40.Wk, 61.80.Az, 71.15.Mb

NEDIDELI NETVARKŪS DEFEKTŲ KLASTERIAI SILICYJE

Ernestas Žąsinas, Juozas Vidmantis Vaitkus
Vilniaus universiteto Taikomųjų mokslų institutas, Vilnius, Lietuva

Jonizuojančioji spinduliuotė sukuria netvarkias defektų sankaupas. Nedidelės sankaupos ir sukurtos sankaupos modeliuotos tankio funkcionalo metodu silicio kristale. Gauta, kad nerelaksavusios sankaupos sukuria daug lokalizuotų būsenų draustinėje juostoje. Pasibaigus relaksacijai didžioji dalis šių būsenų sumažėja ir lieka santykinai seklių donorinės ir akceptorinės prigimties lygmenų, kurie gali daryti įtaką krūvininkų prilipimui bei mažinti efektinį draustinės juostos plotį.

References / Nuorodos

[1] G. Lutz, Semiconductor Radiation Detectors. Device Physics (Springer, 2007),
http://dx.doi.org/10.1007/978-3-540-71679-2
[2] B.R. Gossick, Disordered regions in semiconductors bombarded by fast neutrons, J. Appl. Phys. 30, 1214–1217 (1959),
http://dx.doi.org/10.1063/1.1735295
[3] J.F. Ziegler, Beam interactions with materials and atoms, Nucl. Instrum. Methods B 219–220, 1027–1036 (2004),
http://dx.doi.org/10.1016/j.nimb.2004.01.208
[4] M. Huhtinen, Simulation of non-ionising energy loss and defect formation in silicon, Nucl. Instrum. Methods A 491, 194–215 (2002),
http://dx.doi.org/10.1016/S0168-9002(02)01227-5
[5] M. Aboy, I. Santos, L. Pelaz, L.A. Marqués, and P. López, Modeling of defects, dopant diffusion and clustering in silicon, J. Comput. Electron. 13, 40–58 (2014),
http://dx.doi.org/10.1007/s10825-013-0512-5
[6] J.L. Hastings, S.K. Estreicher, and P.A. Fedders, Vacancy aggregates in silicon, Phys. Rev. B 56, 10215–10220 (1997),
http://dx.doi.org/10.1103/PhysRevB.56.10215
[7] M.P. Chichkine, M.M. De Souza, and E.M.S. Narayanan, Growth of precursors in silicon using pseudopotential calculations, Phys. Rev. Lett. 88, 085501 (2002),
http://dx.doi.org/10.1103/PhysRevLett.88.085501
[8] S. Goedecker, T. Deutsch, and L. Billard, A four-fold coordinated point defect in silicon, Phys. Rev. Lett. 88, 235501 (2002),
http://dx.doi.org/10.1103/PhysRevLett.88.235501
[9] M. Moll, Radiation Damage in Silicon Particle Detectors – Microscopic Defects and Macroscopic Properties, Ph. D. Thesis, DESY-THESIS-1999-040 (Universität Hamburg, December 1999),
http://inspirehep.net/record/513308/
[10] M. Moll, Development of radiation hard sensors for very high luminosity colliders – CERN-RD50 project, Nucl. Instrum. Methods A 511, 97–105 (2003),
http://dx.doi.org/10.1016/S0168-9002(03)01772-8
[11] E. Holmström, K. Nordlund, and M. Hakala, Amorphous defect clusters of pure Si and type inversion in Si detectors, Phys. Rev. B 82, 104111 (2010),
http://dx.doi.org/10.1103/PhysRevB.82.104111
[12] F. Neese, The ORCA program system, WIREs Comput. Mol. Sci. 2, 73–78 (2012),
http://dx.doi.org/10.1002/wcms.81
[13] A.D. Becke, A multicenter numerical integration scheme for polyatomic molecules, J. Chem. Phys. 88, 2547–2553 (1988),
http://dx.doi.org/10.1063/1.454033
[14] A. Kokalj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale, Comp. Mater. Sci. 28, 155–168 (2003),
http://dx.doi.org/10.1016/S0927-0256(03)00104-6
[15] J. Werner and M. Peisl, Exponential band tails in polycrystalline semiconductor films, Phys. Rev. B 31, 6881–6885 (1985),
http://dx.doi.org/10.1103/PhysRevB.31.6881
[16] F. Finger, J. Muller, C. Malten, R. Carius, and H. Wagner, Electronic properties of microcrystalline silicon investigated by electron spin resonance and transport measurements, J. Non–Cryst. Solids 266–269, 511–518 (2000),
http://dx.doi.org/10.1016/S0022-3093(99)00802-9
[17] H. Weman and B. Monemar, Strain induced intrinsic quantum wells as the origin of broad band photoluminescence in silicon containing extended defects, Mater. Res. Soc. Symp. Proc. 163, 257–260 (1990),
http://dx.doi.org/10.1557/PROC-163-257