[PDF]    http://dx.doi.org/10.3952/physics.v56i1.3271

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 1–8 (2016)


ANALYSIS OF PARAMETRIC FLUORESCENCE AMPLIFIED IN A NONCOLLINEAR OPTICAL PARAMETRIC AMPLIFIER PUMPED BY THE SECOND HARMONIC OF A FEMTOSECOND Yb:KGW LASER
Tomas Stanislauskas, Ignas Balčiūnas, Viktorija Tamuliene, Rimantas Budriūnas, and Arūnas Varanavičius
Department of Quantum Electronics, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: tomas.stanislauskas@ff.vu.lt

Received 29 September 2015, revised 18 November 2015; accepted 25 March 2016

We present the results of theoretical and experimental investigation of amplified parametric fluorescence (APF) produced in a high-gain BBO-based femtosecond noncollinear optical parametric amplifier (OPA) pumped at 515 nm. Differences of APF levels in Poynting vector walk-off-compensating and tangential phase-matching amplification geometries are examined. APF suppression due to the presence of a seed pulse in the OPA is measured and is found to be around 6 times in typical OPA operating conditions when pump-to-signal conversion efficiency is 11.5%.
Keywords: parametric fluorescence, optical parametric amplifier, contrast
PACS: 42.65.Yj, 42.65.Re

NEKOLINEARAUS OPTINIO PARAMETRINIO STIPRINTUVO KAUPINAMO ANTRA FEMTOSEKUNDINIO Yb:KGW LAZERIO HARMONIKA PARAMETRINĖS FLUORESCENSIJOS TYRIMAS

Tomas Stanislauskas, Ignas Balčiūnas, Viktorija Tamulienė, Rimantas Budriūnas, Arūnas Varanavičius
Vilniaus universiteto Fizikos fakultetas, Kvantinės elektronikos katedra, Vilnius, Lietuva

Pristatomas tyrimas, skirtas surasti optimalias nekolinearaus optinio parametrinio stiprinimo sąlygas BBO kristale kaupinant femtosekundine 515 nm bangos ilgio spinduliuote, pagrindinį dėmesį skiriant toms sąlygoms, kurios leistų pasiekti geresnį stiprinimo signalinio impulso kontrastą. Pasitelkus teorinį modeliavimą ir eksperimento rezultatus nustatyta, kad nepageidaujamos sustiprintos parametrinės fluorescencijos (SPF) lygis gerokai skiriasi atsižvelgiant į pasirinktą vieną iš dviejų galimų stiprinimo geometrijų. Be to, nauju metodu palyginus SPF intensyvumą vykstant užkrato stiprinimui ir be jo, nustatyta, kad kaupinimo nuskurdinimo atveju SPF lygis sumažėja 6 ir daugiau kartų, kai keitimo iš kaupinimo į signalą efektyvumas pasiekia 11,5 %.

References / Nuorodos

[1] A. Dubietis, G. Jonušauskas, and A. Piskarskas, Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal, Opt. Commun. 88, 437 (1992),
http://dx.doi.org/10.1016/0030-4018(92)90070-8
[2] J. Moses, C. Manzoni, S.-W. Huang, G. Cerullo, and F.X. Kärtner, Temporal optimization of ultrabroadband high-energy OPCPA, Opt. Express 17, 5540 (2009),
http://dx.doi.org/10.1364/OE.17.005540
[3] J. Fülöp, Z. Major, A. Henig, S. Kruber, R. Weingartner, T. Clausnitzer, E. Kley, A. Tünnermann, V. Pervak, A. Apolonski, J. Osterhoff, R. Hörlein, F. Krausz, and S. Karsch, Short-pulse optical parametric chirped-pulse amplification for the generation of high-power few-cycle pulses, New J. Phys. 9, 438 (2007),
http://dx.doi.org/10.1088/1367-2630/9/12/438
[4] T. Stanislauskas, R. Budriūnas, R. Antipenkov, A. Zaukevičius, J. Adamonis, A. Michailovas, L. Giniūnas, R. Danielius, A. Piskarskas, and A. Varanavičius, Table top TW-class OPCPA system driven by tandem femtosecond Yb: KGW and picosecond Nd: YAG lasers, Opt. Express 22, 1865 (2014),
http://dx.doi.org/10.1364/OE.22.001865
[5] S. Harris, M. Oshman, and R. Byer, Observation of tunable optical parametric fluorescence, Phys. Rev. Lett. 18, 732 (1967),
http://dx.doi.org/10.1103/PhysRevLett.18.732
[6] G.D. Boyd and D.A. Kleinman, Parametric interaction of focused Gaussian light beams, J. Appl. Phys. 39(8), 3597–3639 (1968),
http://dx.doi.org/10.1063/1.1656831
[7] A. Laubereau, L. Greiter, and W. Kaiser, Intense tunable picosecond pulses in the infrared, Appl. Phys. Lett. 25, 87 (1974),
http://dx.doi.org/10.1063/1.1655292
[8] R. Danielius, A. Piskarskas, A. Stabinis, G. Banfi, P. Di Trapani, and R. Righini, Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses, J. Opt. Soc. Am. B 10, 2222 (1993),
http://dx.doi.org/10.1364/JOSAB.10.002222
[9] R. Glauber and F. Haake, The initiation of superfluorescence, Phys. Lett. A 68, 29 (1978),
http://dx.doi.org/10.1016/0375-9601(78)90747-8
[10] C. Manzoni, J. Moses, F.X. Kärtner, and G. Cerullo, Excess quantum noise in optical parametric chirped-pulse amplification, Opt. Express 19, 8357 (2011),
http://dx.doi.org/10.1364/OE.19.008357
[11] C. Homann and E. Riedle, Direct measurement of the effective input noise power of an optical parametric amplifier, Laser Photon. Rev. 7, 580 (2013),
http://dx.doi.org/10.1002/lpor.201200119
[12] J. Chwedeńczuk and W. Wasilewski, Intensity of parametric fluorescence pumped by ultrashort pulses, Phys. Rev. A 78, 063823 (2008),
http://dx.doi.org/10.1103/PhysRevA.78.063823
[13] F. Tavella, A. Marcinkevičius, and F. Krausz, Investigation of the superfluorescence and signal amplification in an ultrabroadband multiterawatt optical parametric chirped pulse amplifier system, New J. Phys. 8, 219 (2006),
http://dx.doi.org/10.1088/1367-2630/8/10/219
[14] X. Gu, G. Marcus, Y. Deng, T. Metzger, C. Teisset, N. Ishii, T. Fuji, A. Baltuska, R. Butkus, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, R. Kienberger, and F. Krausz, Generation of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 2.1-μm carrier wavelength, Opt. Express 17, 62 (2009),
http://dx.doi.org/10.1364/OE.17.000062
[15] A.L. Oien, I.T. McKinnie, P. Jain, N.A. Russell, D.M. Warrington, and L.A. Gloster, Efficient, low-threshold collinear and noncollinear β-barium borate optical parametric oscillators, Opt. Lett. 22, 859 (1997),
http://dx.doi.org/10.1364/OL.22.000859
[16] J. Bromage, J. Rothhardt, S. Hädrich, C. Dorrer, C. Jocher, S. Demmler, J. Limpert, A. Tünnermann, and J. Zuegel, Analysis and suppression of parasitic processes in noncollinear optical parametric amplifiers, Opt. Express 19, 16797 (2011),
http://dx.doi.org/10.1364/OE.19.016797
[17] T. Lang, A. Harth, J. Matyschok, T. Binhammer, M. Schultze, and U. Morgner, Impact of temporal, spatial and cascaded effects on the pulse formation in ultrabroadband parametric amplifiers, Opt. Express 21, 949 (2013),
http://dx.doi.org/10.1364/OE.21.000949
[18] V.G. Dmitriev, G.G. Gurzadyan, and D.N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Springer Series in Optical Sciences, Vol. 64 (Springer, 2013),
http://dx.doi.org/10.1007/978-3-540-46793-9
[19] A.V. Smith, SNLO Nonlinear Optics Code (Sandia National Laboratories, Albuquerque, NM, 2004) p. 1423,
http://www.sandia.gov/pcnsc/departments/lasers/snlo-software.html
[20] R. Budriūnas, T. Stanislauskas, and A. Varanavičius, Passively CEP-stabilized frontend for few cycle terawatt OPCPA system, J. Optics 17, 094008 (2015),
http://dx.doi.org/10.1088/2040-8978/17/9/094008