Tomas Stanislauskas, Ignas Balčiūnas, Viktorija Tamuliene,
Rimantas Budriūnas, and Arūnas Varanavičius
Received 29 September 2015, revised 18 November 2015; accepted 25
March 2016
NEKOLINEARAUS OPTINIO
PARAMETRINIO STIPRINTUVO KAUPINAMO ANTRA FEMTOSEKUNDINIO
Yb:KGW LAZERIO HARMONIKA PARAMETRINĖS FLUORESCENSIJOS
TYRIMAS
Pristatomas tyrimas, skirtas surasti
optimalias nekolinearaus optinio parametrinio stiprinimo sąlygas
BBO kristale kaupinant femtosekundine 515 nm bangos ilgio
spinduliuote, pagrindinį dėmesį skiriant toms sąlygoms, kurios
leistų pasiekti geresnį stiprinimo signalinio impulso kontrastą.
Pasitelkus teorinį modeliavimą ir eksperimento rezultatus
nustatyta, kad nepageidaujamos sustiprintos parametrinės
fluorescencijos (SPF) lygis gerokai skiriasi atsižvelgiant į
pasirinktą vieną iš dviejų galimų stiprinimo geometrijų. Be to,
nauju metodu palyginus SPF intensyvumą vykstant užkrato
stiprinimui ir be jo, nustatyta, kad kaupinimo nuskurdinimo
atveju SPF lygis sumažėja 6 ir daugiau kartų, kai keitimo iš
kaupinimo į signalą efektyvumas pasiekia 11,5 %.
References
/
Nuorodos
[1] A. Dubietis, G.
Jonušauskas, and A. Piskarskas, Powerful femtosecond pulse
generation by chirped and stretched pulse parametric
amplification in BBO crystal, Opt. Commun.
88, 437
(1992),
http://dx.doi.org/10.1016/0030-4018(92)90070-8
[2] J. Moses, C. Manzoni, S.-W. Huang, G. Cerullo, and F.X.
Kärtner, Temporal optimization of ultrabroadband high-energy
OPCPA, Opt. Express
17, 5540 (2009),
http://dx.doi.org/10.1364/OE.17.005540
[3] J. Fülöp, Z. Major, A. Henig, S. Kruber, R. Weingartner, T.
Clausnitzer, E. Kley, A. Tünnermann, V. Pervak, A. Apolonski, J.
Osterhoff, R. Hörlein, F. Krausz, and S. Karsch, Short-pulse
optical parametric chirped-pulse amplification for the
generation of high-power few-cycle pulses, New J. Phys.
9,
438 (2007),
http://dx.doi.org/10.1088/1367-2630/9/12/438
[4] T. Stanislauskas, R. Budriūnas, R. Antipenkov, A.
Zaukevičius, J. Adamonis, A. Michailovas, L. Giniūnas, R.
Danielius, A. Piskarskas, and A. Varanavičius, Table top
TW-class OPCPA system driven by tandem femtosecond Yb: KGW and
picosecond Nd: YAG lasers, Opt. Express
22, 1865 (2014),
http://dx.doi.org/10.1364/OE.22.001865
[5] S. Harris, M. Oshman, and R. Byer, Observation of tunable
optical parametric fluorescence, Phys. Rev. Lett.
18,
732 (1967),
http://dx.doi.org/10.1103/PhysRevLett.18.732
[6] G.D. Boyd and D.A. Kleinman, Parametric interaction of
focused Gaussian light beams, J. Appl. Phys.
39(8),
3597–3639 (1968),
http://dx.doi.org/10.1063/1.1656831
[7] A. Laubereau, L. Greiter, and W. Kaiser, Intense tunable
picosecond pulses in the infrared, Appl. Phys. Lett.
25,
87 (1974),
http://dx.doi.org/10.1063/1.1655292
[8] R. Danielius, A. Piskarskas, A. Stabinis, G. Banfi, P. Di
Trapani, and R. Righini, Traveling-wave parametric generation of
widely tunable, highly coherent femtosecond light pulses, J.
Opt. Soc. Am. B
10, 2222 (1993),
http://dx.doi.org/10.1364/JOSAB.10.002222
[9] R. Glauber and F. Haake, The initiation of
superfluorescence, Phys. Lett. A
68, 29 (1978),
http://dx.doi.org/10.1016/0375-9601(78)90747-8
[10] C. Manzoni, J. Moses, F.X. Kärtner, and G. Cerullo, Excess
quantum noise in optical parametric chirped-pulse amplification,
Opt. Express
19, 8357 (2011),
http://dx.doi.org/10.1364/OE.19.008357
[11] C. Homann and E. Riedle, Direct measurement of the
effective input noise power of an optical parametric amplifier,
Laser Photon. Rev.
7, 580 (2013),
http://dx.doi.org/10.1002/lpor.201200119
[12] J. Chwedeńczuk and W. Wasilewski, Intensity of parametric
fluorescence pumped by ultrashort pulses, Phys. Rev. A
78,
063823 (2008),
http://dx.doi.org/10.1103/PhysRevA.78.063823
[13] F. Tavella, A. Marcinkevičius, and F. Krausz, Investigation
of the superfluorescence and signal amplification in an
ultrabroadband multiterawatt optical parametric chirped pulse
amplifier system, New J. Phys.
8, 219 (2006),
http://dx.doi.org/10.1088/1367-2630/8/10/219
[14] X. Gu, G. Marcus, Y. Deng, T. Metzger, C. Teisset, N.
Ishii, T. Fuji, A. Baltuska, R. Butkus, V. Pervak, H. Ishizuki,
T. Taira, T. Kobayashi, R. Kienberger, and F. Krausz, Generation
of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 2.1-μm
carrier wavelength, Opt. Express
17, 62 (2009),
http://dx.doi.org/10.1364/OE.17.000062
[15] A.L. Oien, I.T. McKinnie, P. Jain, N.A. Russell, D.M.
Warrington, and L.A. Gloster, Efficient, low-threshold collinear
and noncollinear β-barium borate optical parametric oscillators,
Opt. Lett.
22, 859 (1997),
http://dx.doi.org/10.1364/OL.22.000859
[16] J. Bromage, J. Rothhardt, S. Hädrich, C. Dorrer, C. Jocher,
S. Demmler, J. Limpert, A. Tünnermann, and J. Zuegel, Analysis
and suppression of parasitic processes in noncollinear optical
parametric amplifiers, Opt. Express
19, 16797 (2011),
http://dx.doi.org/10.1364/OE.19.016797
[17] T. Lang, A. Harth, J. Matyschok, T. Binhammer, M. Schultze,
and U. Morgner, Impact of temporal, spatial and cascaded effects
on the pulse formation in ultrabroadband parametric amplifiers,
Opt. Express
21, 949 (2013),
http://dx.doi.org/10.1364/OE.21.000949
[18] V.G. Dmitriev, G.G. Gurzadyan, and D.N. Nikogosyan,
Handbook
of Nonlinear Optical Crystals, Springer Series in Optical
Sciences, Vol. 64 (Springer, 2013),
http://dx.doi.org/10.1007/978-3-540-46793-9
[19] A.V. Smith,
SNLO Nonlinear Optics Code (Sandia
National Laboratories, Albuquerque, NM, 2004) p. 1423,
http://www.sandia.gov/pcnsc/departments/lasers/snlo-software.html
[20] R. Budriūnas, T. Stanislauskas, and A. Varanavičius,
Passively CEP-stabilized frontend for few cycle terawatt OPCPA
system, J. Optics
17, 094008 (2015),
http://dx.doi.org/10.1088/2040-8978/17/9/094008