Dominykas Bričkus and Aleksandr S. Dement'ev
Received 10 May 2015; revised 19 January 2016; accepted 25 March
2016
FOTOELASTINIO EFEKTO, PLOKŠČIŲ
ĮTEMPIŲ IR DEFORMACIJŲ ARTINIŲ NAUDOJIMAS APRAŠYTI ŠILUMINĮ
FOKUSAVIMĄ
Naudojant tikslias išraiškas, aprašančias
pjezo optinius ir elasto optinius efektus visų klasių kubiniuose
kristaluose, surasti analitiniai ryšiai tarp lūžio rodiklio
temperatūrinių išvestinių esant nuliniam įtempiui ir nulinei
deformacijai. Šie ryšiai gali būti naudingi tirti šiluminius
efektus perspektyviuose m3 klasės tipo lazerio kristaluose.
Skaičiavimuose naudojami dažnai cituojami standartinis ir
literatūroje rastas alternatyvus YAG elasto optinių koeficientų
rinkiniai. Parodyta, kad termo optinių koeficientų vertės
randamos naudojant šiuos rinkinius ženkliai skiriasi. Rastos
radialinio ir tangentinio šiluminio lūžio rodiklio pokyčio
analitinės išraiškos YAG tipo mechaniškai izotropiniams
kristalams, naudojant plokščių įtempių bei plokščių deformacijų
artinius. Aptartos šiluminio lūžio rodiklio pokyčiui aprašyti
literatūroje dažnai naudojamos vadinamosios termo optinės
konstantos. Pašalinti nesusipratimai, susiję su fotoelastiniais
koeficientais, ir rastos naujos jų išraiškos. Parodyta, kad šių
koeficientų panaudojimas nėra toks naudingas, kaip dažnai
manoma, ir kad esant skirtingiems kaupinimo pluoštams tai gali
atvesti prie didelių šiluma indukuoto dvejopo lūžio skirtumų,
palyginti su nuosekliai naudojamu plokščių deformacijų artiniu.
Taip pat parodyta, kad šiluminio lęšio optinio stiprio vertės
gali būti labai pervertinamos, kai plokščių įtempių formulės yra
taikomos lazerio strypams su ilgiu, kelis kartus didesniu nei jų
diametras.
References
/
Nuorodos
[1] B.R. Belostotskii
and A.S. Rubanov,
Thermal Regime of Solid-State Optical
Quantum Generators (Energiya, Moscow, 1973) [in Russian]
[2] W. Koechner, Solid-State Laser Engineering (Springer,
Berlin, 1976); 6th rev. and updated ed. (Springer, Berlin,
2006),
http://dx.doi.org/10.1007/0-387-29338-8
[3] G.M. Zverev, Yu.G. Golyaev, E.A. Shalaev, and A.A. Shokin,
Lasers
on Nd:YAG (Radio i Svyaz, Moscow, 1985) [in Russian]
[4] G.M. Zverev, Yu.G. Golyaev,
Lasers on Crystals and Their
Application (Radio i Svyaz, Moscow, 1994) [in Russian]
[5] A.V. Mezenov, L.N. Soms, and A.I. Stepanov, Thermooptics of
Solid-State Lasers, J. Sov. Laser Res.
8(5), 427–549
(1987). Translated from: Termooptika Tverdotel'nykh Lazerov
(Mashinostroenie Press, Leningrad, 1986),
http://dx.doi.org/10.1007/BF01120583
[6] A. Penzkofer, Solid state lasers, Prog. Quant. Electr.
12(4),
291–427 (1988),
http://dx.doi.org/10.1016/0079-6727(88)90007-9
[7] Y. Kalisky,
The Physics and Engineering of Solid State
Lasers (SPIE Press, Bellingham, Washington, USA, 2005),
http://spie.org/Publications/Book/660249
[8] S. Chénais, F. Druon, S. Forget, F. Balembois, and P.
Georges, On thermal effects in solid-state lasers: The case of
ytterbium-doped materials, Prog. Quant. Electr.
30(4),
89–153 (2006),
http://dx.doi.org/10.1016/j.pquantelec.2006.12.001
[9] R. Iffländer, in: L
andolt–Börnstein – Group VIII Advanced
Materials and Technologies, Vol. 12 (Springer, New York,
2008) pp. 3–96,
http://dx.doi.org/10.1007/978-3-540-45867-8_1
[10] H.-F. Hoffmann, in:
Landolt–Börnstein – Group VIII
Advanced Materials and Technologies, Vol. 12 (Springer,
New York, 2008) pp. 97–124,
http://dx.doi.org/10.1007/978-3-540-45867-8_2
[11] G. Shayeganrad, in:
Solid State Laser, ed. A.H.
Al-Khursan (Intech, Rijeka, 2012) pp. 3–26
[12] J. Yao and Y. Wang,
Nonlinear Optics and Solid-State
Lasers (Springer, Berlin, 2012),
http://dx.doi.org/10.1007/978-3-642-22789-9
[13] Y. Kalisky,
Solid State Lasers: Tunable Sources and
Passive Q-Switching Elements (SPIE Press, Bellingham,
Washington, USA, 2014),
http://dx.doi.org/10.1117/3.1002504
[14] S. Timoshenko and J.N. Goodier,
Theory of Elasticity
(McGraw-Hill Book Company, New York, 1951),
https://www.amazon.co.uk/Theory-Elasticity-Third-Goodier-Timoshenko/dp/B003EGD9FA
[15] A.A. Kaminskii,
Laser Crystals: Their Physics and
Properties, 2nd ed. (Springer, Berlin, 1981),
http://dx.doi.org/10.1007/978-3-540-34838-2
[16] J.D. Foster and L.M. Osterink, Thermal effects in a Nd:YAG
laser, J. Appl. Phys.
41(9), 3656–3663 (1970),
http://dx.doi.org/10.1063/1.1659488
[17] W. Koechner and M. Bass,
Solid-State Lasers: A Graduate
Text (Springer, New York, 2003),
http://dx.doi.org/10.1007/b97423
[18] E. Gaižauskas and V. Sirutkaitis,
Solid State Lasers
(Vilnius University, Vilnius, 2008) [in Lithuanian]
[19] G.I. Zheltov, A.S. Rubanov, and A.V. Chaley, in:
Quantum
Electronics and Laser Spectroscopy (Institute of Physics,
Minsk, 1971) pp. 445–478 [in Russian]
[20] M. Sparks, Optical distortion by heated windows in
high-power laser systems, J. Appl. Phys.
42(12),
5029–5046 (1971),
http://dx.doi.org/10.1063/1.1659888
[21] J.R. Jasperse and P.D. Gianino, Thermal lensing in infrared
window materials, J. Appl. Phys.
43(4), 1686–1693
(1972),
http://dx.doi.org/10.1063/1.1661381
[22] T.F. Deutch, Laser window materials – An overview, J.
Electron. Mater.
4(4), 663–719 (1975),
http://dx.doi.org/10.1007/BF02661168
[23] C.A. Klein, Concept of an effective optical distortion
parameter: application to KCl laser windows, Infrared Phys.
17(5),
343–357 (1977),
http://dx.doi.org/10.1016/0020-0891(77)90036-7
[24] C.A. Klein, Optical distortion coefficients of high power
laser windows, Opt. Eng.
29(4), 343–350 (1990),
http://dx.doi.org/10.1117/12.55600
[25] S.C. Tidwell, J.F. Seamans, M.S. Bower, and A.K. Cousins,
Scaling CW diode-end-pumped Nd:YAG lasers to high average
powers, IEEE J. Quantum Electron.
28(4), 997–1009
(1992),
http://dx.doi.org/10.1109/3.135219
[26] A.K. Cousins, Temperature and thermal stress scaling in
finite-length end-pumped laser rods, IEEE J. Quantum Electron.
28(4),
1057–1069 (1992),
http://dx.doi.org/10.1109/3.135228
[27] M.J. Davis and J.S. Hayden, Thermal lensing of laser
materials, Proc. SPIE
9237, 923710 (2014),
http://dx.doi.org/10.1117/12.2068076
[28] A.M. Rodin, A. Aleknavicius, A. Michailovas, and A.S.
Dementjev, Beam quality investigation in Nd:YAG crystal fiber
amplifier pumped at >110 W, Proc. SPIE
9342, 934207
(2015),
http://dx.doi.org/10.1117/12.2079294
[29] A.S. Dement'ev, Relationships between different expressions
of thermo-optic and photoelastic coefficients of YAG crystal,
Laser Phys.
29(9), 095004 (2015),
http://dx.doi.org/10.1088/1054-660X/25/9/095004
[30] J.F. Nye,
Physical Properties of Crystals: Their
Representation by Tensors and Matrices (Oxford University
Press, Oxford, 1985),
https://www.amazon.co.uk/Physical-Properties-Crystals-Representation-publications/dp/0198511655
[31] R.F. Tinder,
Tensor Properties of Solids:
Phenomenological Development of the Tensor Properties of
Crystals (Morgan & Claypool Publishers, San Rafael,
CA, 2008),
http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6813278
[32] M.P. Nemeth,
An In-Depth Tutorial on Constitutive
Equations for Elastic Anisotropic Materials (NASA Langley
Research Center, Hampton, VA, United States, 2011),
https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/N20110023650.xhtml
[33] T. Graupeter and C. Pflaum, Simulation of birefringence in
laser crystals, Proc. SPIE
8959, 89591S (2014),
http://dx.doi.org/10.1117/12.2037321
[34] T. Graupeter, R. Hartmann, and C. Pflaum, Calculations of
eigenpolarization in Nd:YAG laser rods due to thermally induced
birefringence, IEEE J. Quantum Electron.
50(12),
1035–1043 (2014),
http://dx.doi.org/10.1109/JQE.2014.2365618
[35] A.S. Dement'ev, E.K. Maldutis, and S.V. Sakalauskas, in:
Quantum
Electronics, Issue 15 (Naukova Dumka, Kiev, 1978) pp.
62–76 [in Russian]
[36] A.G. Vyatkin and E.A. Khazanov, Thermally induced
depolarization in sesquioxide class m3 single crystals, J. Opt.
Soc. Am. B
28(4), 805–811 (2011),
http://dx.doi.org/10.1364/JOSAB.28.000805
[37] P.A. Loiko, K.V. Yumashev, R. Schödel, M. Peltz, C.
Liebald, X. Mateos, B. Deppe, and C. Kränkel, Thermo-optic
properties of Yb:Lu2O3 single crystals, Appl. Phys. B.
120(4),
601–607 (2015),
http://dx.doi.org/10.1007/s00340-015-6171-4
[38] I.L. Snetkov, D.E. Silin, O.V. Palshov, E.A. Khazanov, H.
Yagi, T. Yanagitani, H. Yoneda, A. Shirikawa, K. Ueda, and A.A.
Kaminski, Thermo-optic constants of sesquioxide laser ceramics
Yb
3+:Ln
2O
3 (Ln = Y, Lu, Sc),
Phys. Status Solidi C
10(6), 907–913 (2013),
http://dx.doi.org/10.1002/pssc.201300018
[39] R.W. Dixon, Photoelastic properties of selected materials
and their relevance for applications to acoustic light
modulators and scanners, J. Appl. Phys.
38(13),
5149–5153 (1967),
http://dx.doi.org/10.1063/1.1709293
[40] V.R. Johnson and F.A. Olson, Photoelastic properties of
YAG, Proc. IEEE
55(5), 709–710 (1967),
http://dx.doi.org/10.1109/PROC.1967.5652
[41] V.F. Kitaeva, E.V. Zharikov, and I.L. Chistyi, The
properties of crystals with garnet structure, Phys. Status
Solidi A 92(2), 475–488 (1985), [42] C.C.C. Willis, J.D.
Bradford, J. Haussermann, E. McKee, E. Maddox, L. Shah, R.
Gaume, and M. Richardson, Rapid thermo-optic quality assessment
of laser gain media, Opt. Mat. Express
5(6), 1389–1398
(2015),
http://dx.doi.org/10.1364/OME.5.001389
[43] M. Flannery and J. Marburger, Theory of elastooptic
coefficients in polycrystalline materials, Appl. Phys. Lett.
28(10),
600–601 (1976).
http://dx.doi.org/10.1063/1.88579
[44] A. Ikesue, Y.L. Aung, and V. Lupei,
Ceramic Lasers
(Cambridge University Press, New York, 2014),
http://www.cambridge.org/academic/subjects/physics/optics-optoelectronics-and-photonics/ceramic-lasers?format=HB
[45] A.S. Dement'ev, A. Jovaiša, E. Stupak, and R. Kačianauskas,
Thermal stresses and end-bulging in cylindrical laser rods under
longitudinal diode laser pumping, J. Therm. Stresses
37(1),
73–92 (2014),
http://dx.doi.org/10.1080/01495739.2013.839462
[46] L.N. Soms and A.A. Tarasov, Thermal strains in active
elements of color-center lasers. I. Theory, Sov. J. Quantum
Electron.
9(12), 1506–1509 (1979),
http://dx.doi.org/10.1070/QE1979v009n12ABEH009807
[47] T.P. Rodrigues, V.S. Zanuto, R.A. Cruz, T. Catunda, M.L.
Baesso, N.G.C. Asrath, and L.C. Malacarne, Discriminating the
role of sample length in thermal lensing of solids, Opt. Lett.
39(13), 4013–4016 (2014),
http://dx.doi.org/10.1364/OL.39.004013
[48] E.K. Maldutis and S.V. Sakalauskas, Contribution of
thermoelastic stresses to the temperature coefficient of the
refractive index dn/dT of cubic crystals, Sov. J. Quant.
Electron.
11(9), 1255–1256 (1981),
http://dx.doi.org/10.1070/QE1981v011n09ABEH008380
[49] B.N. Grechushnikov and D. Brodovskiy, Thermal stresses in
cubic crystals, Kristallografiya
1(5), 597–599 (1956)
[in Russian]
[50] Yu.I. Sirotin, Temperature stresses, emergent during
heating and cooling of single crystals, Kristallografiya
1(6),
708–717 (1956) [in Russian]
[51] K. Yumashev and P. Loiko, Thermal stresses and end bulging
in the laser disc from a tetragonal crystal: The case of LiYF
4,
Laser Phys.
25(6), 065004 (2015),
http://dx.doi.org/10.1088/1054-660X/25/6/065004
[52] A.S. Dement'ev, A. Jovaiša, K. Račkaitis, F. Ivanauskas,
and J. Dabulytė-Bagdonavičienė, Numerical treatment of the
temperature distribution in end-pumped composite laser rods,
Lith. J. Phys.
47(3), 279–288 (2007),
http://dx.doi.org/10.3952/lithjphys.47316
[53] H. Furuse, R. Yasuhara, and K. Hiraga, Thermooptic
properties of ceramic YAG at high temperatures, Opt. Mater.
Express
4(9), 1794–1799 (2014),
http://dx.doi.org/10.1364/OME.4.001794
[54] Y.-S. Huang, H.-L. Tsai, and F.-L. Chang, Thermooptic
effects affecting the high pump power end pumped solid state
lasers: Modeling and analysis, Opt. Commun.
273(2),
515–525 (2007),
http://dx.doi.org/10.1016/j.optcom.2007.01.037
[55] D. Bričkus, M. Gabalis, and A. Dementjev, in:
Proceedings
of 41st Lithuanian National Physics Conference, Programme
and Abstracts (Vilnius, 2015) p. 185 [in Lithuanian]
[56] A.D. Kovalenko,
Fundamentals of Thermoelasticity
(Naukova Dumka, Kiev, 1970) [in Russian]
[57] S. Wang, H.J. Eichler, X. Wang, F. Kallmeyer, J. Ge, T.
Riesbeck, and J. Chen, Diode end pumped Nd:YAG laser at 946 nm
with high pulse energy limited by thermal lensing, Appl. Phys. B
95(4), 721–730 (2009),
http://dx.doi.org/10.1007/s00340-009-3479-y