[PDF]    http://dx.doi.org/10.3952/physics.v56i1.3272

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 9–20 (2016)


ON THE USE OF PHOTOELASTIC EFFECT AND PLANE STRAIN OR PLANE STRESS APPROXIMATIONS FOR THE DESCRIPTION OF THERMAL LENSING
Dominykas Bričkus and Aleksandr S. Dement'ev
Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: aldement@ktl.mii.lt

Received 10 May 2015; revised 19 January 2016; accepted 25 March 2016

Correct use of the photoelastic effect for the description of thermally induced refractive index change is discussed and the analytical relations between thermo-optic coefficients at zero stresses and zero strains are found for all classes of cubic crystals. These relations may be useful for the investigation of thermal effects in very promising sesquioxide class m3 laser crystals. An accepted set of elasto-optical coefficients of the YAG crystal and an alternative one found in the literature were used in numerical simulations. Significant differences in the calculated thermo-optic coefficients and induced birefringence are found using different sets of these coefficients. Misunderstandings related with the so-called photoelastic coefficients are resolved and new expressions for these coefficients are found. It is shown that the incorrect use of these coefficients for different pump beam distributions can lead to significant discrepancies for thermally induced birefringence. It is also shown that common use of the generalized thermo-optic coefficients significantly overestimates the values of optical power of thermal lenses when they are applied to the laser rods with lengths several times longer than their diameter.
Keywords: solid-state laser, thermal effect, photoelastic effect, plane strain, plane stress
PACS: 42.25.Lc, 42.55.Xi, 78.20.hb

FOTOELASTINIO EFEKTO, PLOKŠČIŲ ĮTEMPIŲ IR DEFORMACIJŲ ARTINIŲ NAUDOJIMAS APRAŠYTI ŠILUMINĮ FOKUSAVIMĄ

Dominykas Bričkus, Aleksandr S. Dementjev
Fizinių ir technologijos mokslų centro Lazerinių technologijų skyrius, Vilnius, Lietuva

Naudojant tikslias išraiškas, aprašančias pjezo optinius ir elasto optinius efektus visų klasių kubiniuose kristaluose, surasti analitiniai ryšiai tarp lūžio rodiklio temperatūrinių išvestinių esant nuliniam įtempiui ir nulinei deformacijai. Šie ryšiai gali būti naudingi tirti šiluminius efektus perspektyviuose m3 klasės tipo lazerio kristaluose. Skaičiavimuose naudojami dažnai cituojami standartinis ir literatūroje rastas alternatyvus YAG elasto optinių koeficientų rinkiniai. Parodyta, kad termo optinių koeficientų vertės randamos naudojant šiuos rinkinius ženkliai skiriasi. Rastos radialinio ir tangentinio šiluminio lūžio rodiklio pokyčio analitinės išraiškos YAG tipo mechaniškai izotropiniams kristalams, naudojant plokščių įtempių bei plokščių deformacijų artinius. Aptartos šiluminio lūžio rodiklio pokyčiui aprašyti literatūroje dažnai naudojamos vadinamosios termo optinės konstantos. Pašalinti nesusipratimai, susiję su fotoelastiniais koeficientais, ir rastos naujos jų išraiškos. Parodyta, kad šių koeficientų panaudojimas nėra toks naudingas, kaip dažnai manoma, ir kad esant skirtingiems kaupinimo pluoštams tai gali atvesti prie didelių šiluma indukuoto dvejopo lūžio skirtumų, palyginti su nuosekliai naudojamu plokščių deformacijų artiniu. Taip pat parodyta, kad šiluminio lęšio optinio stiprio vertės gali būti labai pervertinamos, kai plokščių įtempių formulės yra taikomos lazerio strypams su ilgiu, kelis kartus didesniu nei jų diametras.

References / Nuorodos

[1] B.R. Belostotskii and A.S. Rubanov, Thermal Regime of Solid-State Optical Quantum Generators (Energiya, Moscow, 1973) [in Russian]
[2] W. Koechner, Solid-State Laser Engineering (Springer, Berlin, 1976); 6th rev. and updated ed. (Springer, Berlin, 2006),
http://dx.doi.org/10.1007/0-387-29338-8
[3] G.M. Zverev, Yu.G. Golyaev, E.A. Shalaev, and A.A. Shokin, Lasers on Nd:YAG (Radio i Svyaz, Moscow, 1985) [in Russian]
[4] G.M. Zverev, Yu.G. Golyaev, Lasers on Crystals and Their Application (Radio i Svyaz, Moscow, 1994) [in Russian]
[5] A.V. Mezenov, L.N. Soms, and A.I. Stepanov, Thermooptics of Solid-State Lasers, J. Sov. Laser Res. 8(5), 427–549 (1987). Translated from: Termooptika Tverdotel'nykh Lazerov (Mashinostroenie Press, Leningrad, 1986),
http://dx.doi.org/10.1007/BF01120583
[6] A. Penzkofer, Solid state lasers, Prog. Quant. Electr. 12(4), 291–427 (1988),
http://dx.doi.org/10.1016/0079-6727(88)90007-9
[7] Y. Kalisky, The Physics and Engineering of Solid State Lasers (SPIE Press, Bellingham, Washington, USA, 2005),
http://spie.org/Publications/Book/660249
[8] S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, On thermal effects in solid-state lasers: The case of ytterbium-doped materials, Prog. Quant. Electr. 30(4), 89–153 (2006),
http://dx.doi.org/10.1016/j.pquantelec.2006.12.001
[9] R. Iffländer, in: Landolt–Börnstein – Group VIII Advanced Materials and Technologies, Vol. 12 (Springer, New York, 2008) pp. 3–96,
http://dx.doi.org/10.1007/978-3-540-45867-8_1
[10] H.-F. Hoffmann, in: Landolt–Börnstein – Group VIII Advanced Materials and Technologies, Vol. 12 (Springer, New York, 2008) pp. 97–124,
http://dx.doi.org/10.1007/978-3-540-45867-8_2
[11] G. Shayeganrad, in: Solid State Laser, ed. A.H. Al-Khursan (Intech, Rijeka, 2012) pp. 3–26
[12] J. Yao and Y. Wang, Nonlinear Optics and Solid-State Lasers (Springer, Berlin, 2012),
http://dx.doi.org/10.1007/978-3-642-22789-9
[13] Y. Kalisky, Solid State Lasers: Tunable Sources and Passive Q-Switching Elements (SPIE Press, Bellingham, Washington, USA, 2014),
http://dx.doi.org/10.1117/3.1002504
[14] S. Timoshenko and J.N. Goodier, Theory of Elasticity (McGraw-Hill Book Company, New York, 1951),
https://www.amazon.co.uk/Theory-Elasticity-Third-Goodier-Timoshenko/dp/B003EGD9FA
[15] A.A. Kaminskii, Laser Crystals: Their Physics and Properties, 2nd ed. (Springer, Berlin, 1981),
http://dx.doi.org/10.1007/978-3-540-34838-2
[16] J.D. Foster and L.M. Osterink, Thermal effects in a Nd:YAG laser, J. Appl. Phys. 41(9), 3656–3663 (1970),
http://dx.doi.org/10.1063/1.1659488
[17] W. Koechner and M. Bass, Solid-State Lasers: A Graduate Text (Springer, New York, 2003),
http://dx.doi.org/10.1007/b97423
[18] E. Gaižauskas and V. Sirutkaitis, Solid State Lasers (Vilnius University, Vilnius, 2008) [in Lithuanian]
[19] G.I. Zheltov, A.S. Rubanov, and A.V. Chaley, in: Quantum Electronics and Laser Spectroscopy (Institute of Physics, Minsk, 1971) pp. 445–478 [in Russian]
[20] M. Sparks, Optical distortion by heated windows in high-power laser systems, J. Appl. Phys. 42(12), 5029–5046 (1971),
http://dx.doi.org/10.1063/1.1659888
[21] J.R. Jasperse and P.D. Gianino, Thermal lensing in infrared window materials, J. Appl. Phys. 43(4), 1686–1693 (1972),
http://dx.doi.org/10.1063/1.1661381
[22] T.F. Deutch, Laser window materials – An overview, J. Electron. Mater. 4(4), 663–719 (1975),
http://dx.doi.org/10.1007/BF02661168
[23] C.A. Klein, Concept of an effective optical distortion parameter: application to KCl laser windows, Infrared Phys. 17(5), 343–357 (1977),
http://dx.doi.org/10.1016/0020-0891(77)90036-7
[24] C.A. Klein, Optical distortion coefficients of high power laser windows, Opt. Eng. 29(4), 343–350 (1990),
http://dx.doi.org/10.1117/12.55600
[25] S.C. Tidwell, J.F. Seamans, M.S. Bower, and A.K. Cousins, Scaling CW diode-end-pumped Nd:YAG lasers to high average powers, IEEE J. Quantum Electron. 28(4), 997–1009 (1992),
http://dx.doi.org/10.1109/3.135219
[26] A.K. Cousins, Temperature and thermal stress scaling in finite-length end-pumped laser rods, IEEE J. Quantum Electron. 28(4), 1057–1069 (1992),
http://dx.doi.org/10.1109/3.135228
[27] M.J. Davis and J.S. Hayden, Thermal lensing of laser materials, Proc. SPIE 9237, 923710 (2014),
http://dx.doi.org/10.1117/12.2068076
[28] A.M. Rodin, A. Aleknavicius, A. Michailovas, and A.S. Dementjev, Beam quality investigation in Nd:YAG crystal fiber amplifier pumped at >110 W, Proc. SPIE 9342, 934207 (2015),
http://dx.doi.org/10.1117/12.2079294
[29] A.S. Dement'ev, Relationships between different expressions of thermo-optic and photoelastic coefficients of YAG crystal, Laser Phys. 29(9), 095004 (2015),
http://dx.doi.org/10.1088/1054-660X/25/9/095004
[30] J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1985),
https://www.amazon.co.uk/Physical-Properties-Crystals-Representation-publications/dp/0198511655
[31] R.F. Tinder, Tensor Properties of Solids: Phenomenological Development of the Tensor Properties of Crystals (Morgan & Claypool Publishers, San Rafael, CA, 2008),
http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6813278
[32] M.P. Nemeth, An In-Depth Tutorial on Constitutive Equations for Elastic Anisotropic Materials (NASA Langley Research Center, Hampton, VA, United States, 2011),
https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/N20110023650.xhtml
[33] T. Graupeter and C. Pflaum, Simulation of birefringence in laser crystals, Proc. SPIE 8959, 89591S (2014),
http://dx.doi.org/10.1117/12.2037321
[34] T. Graupeter, R. Hartmann, and C. Pflaum, Calculations of eigenpolarization in Nd:YAG laser rods due to thermally induced birefringence, IEEE J. Quantum Electron. 50(12), 1035–1043 (2014),
http://dx.doi.org/10.1109/JQE.2014.2365618
[35] A.S. Dement'ev, E.K. Maldutis, and S.V. Sakalauskas, in: Quantum Electronics, Issue 15 (Naukova Dumka, Kiev, 1978) pp. 62–76 [in Russian]
[36] A.G. Vyatkin and E.A. Khazanov, Thermally induced depolarization in sesquioxide class m3 single crystals, J. Opt. Soc. Am. B 28(4), 805–811 (2011),
http://dx.doi.org/10.1364/JOSAB.28.000805
[37] P.A. Loiko, K.V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, Thermo-optic properties of Yb:Lu2O3 single crystals, Appl. Phys. B. 120(4), 601–607 (2015),
http://dx.doi.org/10.1007/s00340-015-6171-4
[38] I.L. Snetkov, D.E. Silin, O.V. Palshov, E.A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirikawa, K. Ueda, and A.A. Kaminski, Thermo-optic constants of sesquioxide laser ceramics Yb3+:Ln2O3 (Ln = Y, Lu, Sc), Phys. Status Solidi C 10(6), 907–913 (2013),
http://dx.doi.org/10.1002/pssc.201300018
[39] R.W. Dixon, Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners, J. Appl. Phys. 38(13), 5149–5153 (1967),
http://dx.doi.org/10.1063/1.1709293
[40] V.R. Johnson and F.A. Olson, Photoelastic properties of YAG, Proc. IEEE 55(5), 709–710 (1967),
http://dx.doi.org/10.1109/PROC.1967.5652
[41] V.F. Kitaeva, E.V. Zharikov, and I.L. Chistyi, The properties of crystals with garnet structure, Phys. Status Solidi A 92(2), 475–488 (1985), [42] C.C.C. Willis, J.D. Bradford, J. Haussermann, E. McKee, E. Maddox, L. Shah, R. Gaume, and M. Richardson, Rapid thermo-optic quality assessment of laser gain media, Opt. Mat. Express 5(6), 1389–1398 (2015),
http://dx.doi.org/10.1364/OME.5.001389
[43] M. Flannery and J. Marburger, Theory of elastooptic coefficients in polycrystalline materials, Appl. Phys. Lett. 28(10), 600–601 (1976).
http://dx.doi.org/10.1063/1.88579
[44] A. Ikesue, Y.L. Aung, and V. Lupei, Ceramic Lasers (Cambridge University Press, New York, 2014),
http://www.cambridge.org/academic/subjects/physics/optics-optoelectronics-and-photonics/ceramic-lasers?format=HB
[45] A.S. Dement'ev, A. Jovaiša, E. Stupak, and R. Kačianauskas, Thermal stresses and end-bulging in cylindrical laser rods under longitudinal diode laser pumping, J. Therm. Stresses 37(1), 73–92 (2014),
http://dx.doi.org/10.1080/01495739.2013.839462
[46] L.N. Soms and A.A. Tarasov, Thermal strains in active elements of color-center lasers. I. Theory, Sov. J. Quantum Electron. 9(12), 1506–1509 (1979),
http://dx.doi.org/10.1070/QE1979v009n12ABEH009807
[47] T.P. Rodrigues, V.S. Zanuto, R.A. Cruz, T. Catunda, M.L. Baesso, N.G.C. Asrath, and L.C. Malacarne, Discriminating the role of sample length in thermal lensing of solids, Opt. Lett. 39(13), 4013–4016 (2014),
http://dx.doi.org/10.1364/OL.39.004013
[48] E.K. Maldutis and S.V. Sakalauskas, Contribution of thermoelastic stresses to the temperature coefficient of the refractive index dn/dT of cubic crystals, Sov. J. Quant. Electron. 11(9), 1255–1256 (1981),
http://dx.doi.org/10.1070/QE1981v011n09ABEH008380
[49] B.N. Grechushnikov and D. Brodovskiy, Thermal stresses in cubic crystals, Kristallografiya 1(5), 597–599 (1956) [in Russian]
[50] Yu.I. Sirotin, Temperature stresses, emergent during heating and cooling of single crystals, Kristallografiya 1(6), 708–717 (1956) [in Russian]
[51] K. Yumashev and P. Loiko, Thermal stresses and end bulging in the laser disc from a tetragonal crystal: The case of LiYF4, Laser Phys. 25(6), 065004 (2015),
http://dx.doi.org/10.1088/1054-660X/25/6/065004
[52] A.S. Dement'ev, A. Jovaiša, K. Račkaitis, F. Ivanauskas, and J. Dabulytė-Bagdonavičienė, Numerical treatment of the temperature distribution in end-pumped composite laser rods, Lith. J. Phys. 47(3), 279–288 (2007),
http://dx.doi.org/10.3952/lithjphys.47316
[53] H. Furuse, R. Yasuhara, and K. Hiraga, Thermooptic properties of ceramic YAG at high temperatures, Opt. Mater. Express 4(9), 1794–1799 (2014),
http://dx.doi.org/10.1364/OME.4.001794
[54] Y.-S. Huang, H.-L. Tsai, and F.-L. Chang, Thermooptic effects affecting the high pump power end pumped solid state lasers: Modeling and analysis, Opt. Commun. 273(2), 515–525 (2007),
http://dx.doi.org/10.1016/j.optcom.2007.01.037
[55] D. Bričkus, M. Gabalis, and A. Dementjev, in: Proceedings of 41st Lithuanian National Physics Conference, Programme and Abstracts (Vilnius, 2015) p. 185 [in Lithuanian]
[56] A.D. Kovalenko, Fundamentals of Thermoelasticity (Naukova Dumka, Kiev, 1970) [in Russian]
[57] S. Wang, H.J. Eichler, X. Wang, F. Kallmeyer, J. Ge, T. Riesbeck, and J. Chen, Diode end pumped Nd:YAG laser at 946 nm with high pulse energy limited by thermal lensing, Appl. Phys. B 95(4), 721–730 (2009),
http://dx.doi.org/10.1007/s00340-009-3479-y