[PDF]    http://dx.doi.org/10.3952/physics.v56i1.3273

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 21–34 (2016)


A TUNABLE FEMTOSECOND STIMULATED RAMAN SCATTERING SYSTEM BASED ON SPECTRALLY NARROWED SECOND HARMONIC GENERATION
Kipras Redeckas, Vladislava Voiciuk, and Mikas Vengris
Department of Quantum Electronics, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: kipras.redeckas@ff.vu.lt

Received 13 November 2015; revised 6 January 2016; accepted 25 March 2016

In this work we present a femtosecond stimulated Raman scattering system. The setup is based on a commercial femtosecond laser system supplemented by a pair of travelling-wave optical parametric amplifiers. One of the parametric amplifiers is used to generate the femtosecond actinic pump pulses, whereas the output of the other (high-power) parametric amplifier undergoes a combination of spectrally narrowed second harmonic generation in a long non-linear crystal and subsequent spectral filtering for the generation of narrowband Raman pump pulses. Chirped white light supercontinuum is used as the Raman probe. The setup offers tunability of the Raman pump pulses in the 400–800 nm range, and spectral and temporal resolutions of ca. 6 cm–1 and ca. 70 fs, respectively. We present the basic technical and optical aspects of the system along with data acquisition and signal retrieval techniques. We characterize the system by exploring the time-resolved vibrational dynamics of the S2(11Bu+) and S1(21Ag) excited states of β-carotene.
Keywords: femtosecond stimulated Raman scattering, FSRS, ultrafast vibrational spectroscopy, carotenoids, β-carotene
PACS: 07.60.Rd, 42.65.Dr, 31.70.Hq

DERINAMO DAŽNIO FEMTOSEKUNDINĖ PRIVERSTINĖS RAMANO SKLAIDOS SISTEMA, PAGRĮSTA SPEKTRIŠKAI SUSIAURINTOS ANTROSIOS HARMONIKOS GENERAVIMU

Kipras Redeckas, Vladislava Voiciuk, Mikas Vengris
Vilniaus universiteto Kvantinės elektronikos katedra, Vilnius, Lietuva

Darbe pristatome femtosekundinę priverstinės Ramano sklaidos sistemą. Pirminis eksperimente naudojamų impulsų šaltinis yra komercinė femtosekundinė lazerinė sistema, kaupinanti du bėgančios bangos optinius parametrinius stiprintuvus. Vienas iš optinių parametrinių stiprintuvų naudojamas derinamų parametrinių stiprintuvų femtosekundiniams žadinantiesiems impulsams generuoti. Kito (didelės išvadinės galios) optinio parametrinio stiprintuvo spinduliuotė nukreipiama į ilgą netiesinį kristalą ir 4f spektrinio filtravimo sistemą, taip formuojant siaurajuosčius (pikosekundinius) Ramano sklaidos žadinimo impulsus. Plačiajuostis baltos šviesos superkontinuumas naudojamas zonduojant priverstinę Ramano sklaidą. Tokia eksperimentinė konfigūracija leidžia generuoti Ramano sklaidos žadinimo impulsus 400–800 nm diapazone ir pasiekti ~6 cm–1 spektrinę bei ~70 fs laikinę skyras. Šiame darbe mes apžvelgiame techninę šios matavimo sistemos dalį, jos optinę konfigūraciją bei pagrindinius spektrinių signalų registravimo ir rekonstrukcijos aspektus. Sistemai charakterizuoti ir jos galimybėms pristatyti mes pateikiame β-karoteno sužadintųjų būsenų S2(11Bu+) ir S1(21Ag) laikinės skyros tyrimus.

References / Nuorodos

[1] P. Stoutland, R. Dyer, and W. Woodruff, Ultrafast infrared spectroscopy, Science 257(5078), 1913–1917 (1992),
http://dx.doi.org/10.1126/science.1329200
[2] M.D. Fayer, Ultrafast Infrared and Raman Spectroscopy (CRC Press, New York, USA, 2001),
http://dx.doi.org/10.1201/9780203904763
[3] J. Knorr, P. Rudolf, and P. Nuernberger, A comparative study on chirped-pulse upconversion and direct multichannel MCT detection, Opt. Express 21(25), 30693–30706 (2013),
http://dx.doi.org/10.1364/OE.21.030693
[4] C.R. Baiz and K.J. Kubarych, Ultrabroadband detection of a mid-IR continuum by chirped-pulse upconversion, Opt. Lett. 36(2), 187–189 (2011),
http://dx.doi.org/10.1364/OL.36.000187
[5] P. Kukura, D.W. McCamant, and R.A. Mathies, Femtosecond stimulated Raman spectroscopy, Annu. Rev. Phys. Chem. 58(1), 461–488 (2007),
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104456
[6] D.W. McCamant, P. Kukura, and R.A. Mathies, Femtosecond broadband stimulated Raman: a new approach for high-performance vibrational spectroscopy, Appl. Spectrosc. 57(11), 1317–1323 (2003),
http://dx.doi.org/10.1366/000370203322554455
[7] D.W. McCamant, P. Kukura, S. Yoon, and R.A. Mathies, Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods, Rev. Sci. Instrum. 75(11), 4971–4980 (2004),
http://dx.doi.org/10.1063/1.1807566
[8] D.W. McCamant, P. Kukura, and R.A. Mathies, Femtosecond time-resolved stimulated Raman spectroscopy: Application to the ultrafast internal conversion in β-carotene, J. Phys. Chem. A 107(40), 8208–8214 (2003),
http://dx.doi.org/10.1021/jp030147n
[9] H. Kuramochi, S. Takeuchi, and T. Tahara, Ultrafast structural evolution of photoactive yellow protein chromophore revealed by ultraviolet resonance femtosecond stimulated Raman spectroscopy, J. Phys. Chem. Lett. 3(15), 2025–2029 (2012),
http://dx.doi.org/10.1021/jz300542f
[10] C. Fang, R.R. Frontiera, R. Tran, and R.A. Mathies, Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy, Nature 462(7270), 200–204 (2009),
http://dx.doi.org/10.1038/nature08527
[11] S. Shim and R.A. Mathies, Development of a tunable femtosecond stimulated Raman apparatus and its application to β-carotene, J. Phys. Chem. B 112(15), 4826–4832 (2008),
http://dx.doi.org/10.1021/jp710518y
[12] P. Kukura, D.W. McCamant, and R.A. Mathies, Femtosecond time-resolved stimulated Raman spectroscopy of the S2 (1Bu+) excited state of β-carotene, J. Phys. Chem. A 108(28), 5921–5925 (2004),
http://dx.doi.org/10.1021/jp0482971
[13] D.W. McCamant, P. Kukura, and R.A. Mathies, Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin, J. Phys. Chem. B 109(20), 10449–10457 (2005),
http://dx.doi.org/10.1021/jp050095x
[14] S. Frobel, L. Buschhaus, T. Villnow, O. Weingart, and P. Gilch, The photoformation of a phthalide: a ketene intermediate traced by FSRS, Phys. Chem. Chem. Phys. 17(1), 376–386 (2015),
http://dx.doi.org/10.1039/C4CP03351E
[15] D.P. Hoffman and R.A. Mathies, Photoexcited structural dynamics of an azobenzene analog 4-nitro-4′-dimethylamino-azobenzene from femtosecond stimulated Raman, Phys. Chem. Chem. Phys. 14(18), 6298–6306 (2012),
http://dx.doi.org/10.1039/c2cp23468h
[16] A.L. Dobryakov, I. Ioffe, A.A. Granovsky, N.P. Ernsting, and S.A. Kovalenko, Femtosecond Raman spectra of cis-stilbene and trans-stilbene with isotopomers in solution, J. Chem. Phys. 137(24), 244505 (2012),
http://dx.doi.org/10.1063/1.4769971
[17] A.L. Smeigh, M. Creelman, R.A. Mathies, and J.K. McCusker, Femtosecond time-resolved optical and Raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching, J. Am. Chem. Soc. 130(43), 14105–14107 (2008),
http://dx.doi.org/10.1021/ja805949s
[18] S. Yoon, P. Kukura, C.M. Stuart, and R.A. Mathies, Direct observation of the ultrafast intersystem crossing in tris(2,2-bipyridine)ruthenium(II) using femtosecond stimulated Raman spectroscopy, Mol. Phys. 104(8), 1275–1282 (2006),
http://dx.doi.org/10.1080/00268970500525846
[19] T. Fujisawa, M. Creelman, and R.A. Mathies, Structural dynamics of a noncovalent charge transfer complex from femtosecond stimulated Raman spectroscopy, J. Phys. Chem. B 116(35), 10453–10460 (2012),
http://dx.doi.org/10.1021/jp3001306
[20] K.E. Brown, B.S. Veldkamp, D.T. Co, and M.R. Wasielewski, Vibrational dynamics of a perylene–perylenediimide donor–acceptor dyad probed with femtosecond stimulated Raman spectroscopy, J. Phys. Chem. Lett. 3(17), 2362–2366 (2012),
http://dx.doi.org/10.1021/jz301107c
[21] R.M. Young, S.M. Dyar, J.C. Barnes, M. Juríček, J.F. Stoddart, D.T. Co, and M.R. Wasielewski, Ultrafast conformational dynamics of electron transfer in ExBox4+⊂perylene, J. Phys. Chem. A 117(47), 12438–12448 (2013),
http://dx.doi.org/10.1021/jp409883a
[22] E.M. Grumstrup, Z. Chen, R.P. Vary, A.M. Moran, K.S. Schanze, and J.M. Papanikolas, Frequency modulated femtosecond stimulated Raman spectroscopy of ultrafast energy transfer in a donor–acceptor copolymer, J. Phys. Chem. B 117(27), 8245–8255 (2013),
http://dx.doi.org/10.1021/jp404498u
[23] R.R. Frontiera and R.A. Mathies, Polarization dependence of vibrational coupling signals in femtosecond stimulated Raman spectroscopy, J. Chem. Phys. 127(12), 124501 (2007),
http://dx.doi.org/10.1063/1.2780843
[24] S. Shim and R.A. Mathies, Femtosecond Raman-induced Kerr effect spectroscopy, J. Raman Spectrosc. 39(11), 1526–1530 (2008),
http://dx.doi.org/10.1002/jrs.2109
[25] R.R. Frontiera, A.-I. Henry, N.L. Gruenke, and R.P. Van Duyne, Surface-enhanced femtosecond stimulated Raman spectroscopy, J. Phys. Chem. Lett. 2(10), 1199–1203 (2011),
http://dx.doi.org/10.1021/jz200498z
[26] D.P. Hoffman, S.R. Ellis, and R.A. Mathies, Characterization of a conical intersection in a charge-transfer dimer with two-dimensional time-resolved stimulated Raman spectroscopy, J. Phys. Chem. A 118(27), 4955–4965 (2014),
http://dx.doi.org/10.1021/jp5041986
[27] D.T. Valley, D.P. Hoffman, and R.A. Mathies, Reactive and unreactive pathways in a photochemical ring opening reaction from 2D femtosecond stimulated Raman, Phys. Chem. Chem. Phys. 17(14), 9231–9240 (2015),
http://dx.doi.org/10.1039/C4CP05323K
[28] B. Dunlap, P. Richter, and D.W. McCamant, Stimulated Raman spectroscopy using chirped pulses, J. Raman Spectrosc. 45(10), 918–929 (2014),
http://dx.doi.org/10.1002/jrs.4578
[29] K.E. Dorfman, F. Schlawin, and S. Mukamel, Stimulated Raman spectroscopy with entangled light: enhanced resolution and pathway selection, J. Phys. Chem. Lett. 5(16), 2843–2849 (2014),
http://dx.doi.org/10.1021/jz501124a
[30] R.R. Frontiera, C. Fang, J. Dasgupta, and R.A. Mathies, Probing structural evolution along multidimensional reaction coordinates with femtosecond stimulated Raman spectroscopy, Phys. Chem. Chem. Phys. 14(2), 405–414 (2012),
http://dx.doi.org/10.1039/C1CP22767J
[31] B. Zhao, K. Niu, X. Li, and S.-Y. Lee, Simple aspects of femtosecond stimulated Raman spectroscopy, Sci. China Chem. 54(12), 1989–2008 (2011),
http://dx.doi.org/10.1007/s11426-011-4430-8
[32] W. Rock, Y.-L. Li, P. Pagano, and C.M. Cheatum, 2D IR spectroscopy using four-wave mixing, pulse shaping, and IR upconversion: a quantitative comparison, J. Phys. Chem. A 117(29), 6073–6083 (2013),
http://dx.doi.org/10.1021/jp312817t
[33] W.R. Silva, E.L. Keller, and R.R. Frontiera, Determination of resonance Raman cross-sections for use in biological SERS sensing with femtosecond stimulated Raman spectroscopy, Anal. Chem. 86(15), 7782–7787 (2014),
http://dx.doi.org/10.1021/ac501701h
[34] D. Verreault, V. Kurz, C. Howell, and P. Koelsch, Sample cells for probing solid/liquid interfaces with broadband sum-frequency-generation spectroscopy, Rev. Sci. Instrum. 81(6), 063111 (2010),
http://dx.doi.org/10.1063/1.3443096
[35] M.J. Nee, R. McCanne, K.J. Kubarych, and M. Joffre, Two-dimensional infrared spectroscopy detected by chirped pulse upconversion, Opt. Lett. 32(6), 713–715 (2007),
http://dx.doi.org/10.1364/OL.32.000713
[36] J. Zhu, T. Mathes, A.D. Stahl, J.T.M. Kennis, and M.L. Groot, Ultrafast mid-infrared spectroscopy by chirped pulse upconversion in 1800–1000 cm–1 region, Opt. Express 20(10), 10562–10571 (2012),
http://dx.doi.org/10.1364/OE.20.010562
[37] W. Yu, P.J. Donohoo-Vallett, J. Zhou, and A.E. Bragg, Ultrafast photo-induced nuclear relaxation of a conformationally disordered conjugated polymer probed with transient absorption and femtosecond stimulated Raman spectroscopies, J. Chem. Phys. 141(4), 044201 (2014),
http://dx.doi.org/10.1063/1.4890326
[38] A. Weigel and N.P. Ernsting, Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy, J. Phys. Chem. B 114(23), 7879–7893 (2010),
http://dx.doi.org/10.1021/jp100181z
[39] S.A. Kovalenko, A.L. Dobryakov, and N.P. Ernsting, An efficient setup for femtosecond stimulated Raman spectroscopy, Rev. Sci. Instrum. 82(6), 063102 (2011),
http://dx.doi.org/10.1063/1.3596453
[40] L. Zhu, W. Liu, and C. Fang, A versatile femtosecond stimulated Raman spectroscopy setup with tunable pulses in the visible to near infrared, Appl. Phys. Lett. 105(4), 041106 (2014),
http://dx.doi.org/10.1063/1.4891766
[41] Light Conversion TOPAS-800, accessed 14/10/2015,
http://www.lightcon.com/upload/iblock/29d/29d33cd94596711304f676b78bc85064.pdf
[42] M.A. Marangoni, D. Brida, M. Quintavalle, G. Cirmi, F.M. Pigozzo, C. Manzoni, F. Baronio, A.D. Capobianco, and G. Cerullo, Narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in second-order nonlinear crystals, Opt. Express 15(14), 8884–8891 (2007),
http://dx.doi.org/10.1364/OE.15.008884
[43] E. Pontecorvo, C. Ferrante, C.G. Elles, and T. Scopigno, Spectrally tailored narrowband pulses for femtosecond stimulated Raman spectroscopy in the range 330–750 nm, Opt. Express 21(6), 6866–6872 (2013),
http://dx.doi.org/10.1364/OE.21.006866
[44] V.G. Dmitriev, G.G. Gurzadyan, and D.N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, Berlin, Germany, 1999),
http://dx.doi.org/10.1007/978-3-540-46793-9
[45] E. Pontecorvo, S.M. Kapetanaki, M. Badioli, D. Brida, M. Marangoni, G. Cerullo, and T. Scopigno, Femtosecond stimulated Raman spectrometer in the 320–520 nm range, Opt. Express 19(2), 1107–1112 (2011),
http://dx.doi.org/10.1364/OE.19.001107
[46] D.P. Hoffman, O.P. Lee, J.E. Millstone, M.S. Chen, T.A. Su, M. Creelman, J.M.J. Fréchet, and R.A. Mathies, Electron transfer dynamics of triphenylamine dyes bound to TiO2 nanoparticles from femtosecond stimulated Raman spectroscopy, J. Phys. Chem. C 117(14), 6990–6997 (2013),
http://dx.doi.org/10.1021/jp400369b
[47] F. Han, W. Liu, and C. Fang, Excited-state proton transfer of photoexcited pyranine in water observed by femtosecond stimulated Raman spectroscopy, Chem. Phys. 422, 204–219 (2013),
http://dx.doi.org/10.1016/j.chemphys.2013.03.009
[48] M. Kloz, R. van Grondelle, and J.T.M. Kennis, Wavelength-modulated femtosecond stimulated Raman spectroscopy – approach towards automatic data processing, Phys. Chem. Chem. Phys. 13(40), 18123–18133 (2011),
http://dx.doi.org/10.1039/c1cp21650c
[49] A. Weigel, A. Dobryakov, B. Klaumünzer, M. Sajadi, P. Saalfrank, and N.P. Ernsting, Femtosecond stimulated Raman spectroscopy of flavin after optical excitation, J. Phys. Chem. B 115(13), 3656–3680 (2011),
http://dx.doi.org/10.1021/jp1117129
[50] S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, A femtosecond stimulated Raman spectrograph for the near ultraviolet, Appl. Phys. B 85(4), 557–564 (2006),
http://dx.doi.org/10.1007/s00340-006-2386-8
[51] H. Ando, B.P. Fingerhut, K.E. Dorfman, J.D. Biggs, and S. Mukamel, Femtosecond stimulated Raman spectroscopy of the cyclobutane thymine dimer repair mechanism: a computational study, J. Am. Chem. Soc. 136(42), 14801–14810 (2014),
http://dx.doi.org/10.1021/ja5063955
[52] J.R. Ferraro, K. Nakamoto, and C.W. Brown, Introductory Raman Spectroscopy (Academic Press, Amsterdam, The Netherlands, 2003),
http://store.elsevier.com/product.jsp?isbn=9780122541056
[53] J. Dasgupta, R.R. Frontiera, K.C. Taylor, J.C. Lagarias, and R.A. Mathies, Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy, Proc. Natl. Acad. Sci. USA 106(6), 1784–1789 (2009),
http://dx.doi.org/10.1073/pnas.0812056106
[54] H.A. Frank and R.J. Cogdell, Carotenoids in photosynthesis, Photochem. Photobiol. 63(3), 257–264 (1996),
http://dx.doi.org/10.1111/j.1751-1097.1996.tb03022.x
[55] B. Demmig-Adams and W.W. Adams III, The role of xanthophyll cycle carotenoids in the protection of photosynthesis, Trends Plant Sci. 1(1), 21–26 (1996),
http://dx.doi.org/10.1016/S1360-1385(96)80019-7
[56] Y. Koyama, M. Kuki, P.O. Andersson, and T. Gillbro, Singlet excited states and the light-harvesting function of carotenoids in bacterial photosynthesis, Photochem. Photobiol. 63(3), 243–256 (1996),
http://dx.doi.org/10.1111/j.1751-1097.1996.tb03021.x
[57] A. Young and G. Britton, Carotenoids in Photosynthesis (Springer Science & Business Media, Dordrecht, The Netherlands, 1993),
http://dx.doi.org/10.1007/978-94-011-2124-8
[58] M. Kloz, R. van Grondelle, and J.T.M. Kennis, Correction for the time dependent inner filter effect caused by transient absorption in femtosecond stimulated Raman experiment, Chem. Phys. Lett. 544, 94–101 (2012),
http://dx.doi.org/10.1016/j.cplett.2012.07.005
[59] T. Noguchi, S. Kolaczkowski, C. Arbour, S. Aramaki, G.H. Atkinson, H. Hayashi, and M. Tasumi, Resonance Raman spectrum of the excited 2Ag state of β-carotene, Photochem. Photobiol. 50(5), 603–609 (1989),
http://dx.doi.org/10.1111/j.1751-1097.1989.tb04315.x
[60] D.W. McCamant, J.E. Kim, and R.A. Mathies, Vibrational relaxation in β-carotene probed by picosecond Stokes and anti-Stokes resonance Raman spectroscopy, J. Phys. Chem. A 106(25), 6030–6038 (2002),
http://dx.doi.org/10.1021/jp0203595
[61] J.-P. Zhang, L.H. Skibsted, R. Fujii, and Y. Koyama, Transient absorption from the 1Bu+ state of all-trans-β-carotene newly identified in the near-infrared region, Photochem. Photobiol. 73(3), 219–222 (2001),
http://dx.doi.org/10.1562/0031-8655(2001)0730219TAFTUS2.0.CO2
[62] D.S. Larsen, E. Papagiannakis, I.H.M. van Stokkum, M. Vengris, J.T.M. Kennis, and R. van Grondelle, Excited state dynamics of β-carotene explored with dispersed multi-pulse transient absorption, Chem. Phys. Lett. 381(5–6), 733–742 (2003),
http://dx.doi.org/10.1016/j.cplett.2003.10.016
[63] H. Hashimoto, Y. Koyama, Y. Hirata, and N. Mataga, S1 and T1 species of β-carotene generated by direct photoexcitation from the all-trans, 9-cis, 13-cis, and 15-cis isomers as revealed by picosecond transient absorption and transient Raman spectroscopies, J. Phys. Chem. 95(8), 3072–3076 (1991),
http://dx.doi.org/10.1021/j100161a022
[64] R.R. Frontiera, S. Shim, and R.A. Mathies, Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy, J. Chem. Phys. 129(6), 064507 (2008),
http://dx.doi.org/10.1063/1.2966361
[65] Z. Sun, Z. Jin, J. Lu, D.H. Zhang, and S.-Y. Lee, Wave packet theory of dynamic stimulated Raman spectra in femtosecond pump-probe spectroscopy, J. Chem. Phys. 126(17), 174104 (2007),
http://dx.doi.org/10.1063/1.2715593
[66] D. Zigmantas, R.G. Hiller, V. Sundström, and T. Polívka, Carotenoid to chlorophyll energy transfer in the peridinin–chlorophyll-a–protein complex involves an intramolecular charge transfer state, Proc. Natl. Acad. Sci. USA 99(26), 16760–16765 (2002),
http://dx.doi.org/10.1073/pnas.262537599
[67] V. Butkus, A. Gelzinis, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Zigmantas, L. Valkunas, and D. Abramavicius, Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study, J. Chem. Phys. 142(21), 212414 (2015),
http://dx.doi.org/10.1063/1.4914098
[68] E. Papagiannakis, J.T.M. Kennis, I.H.M. van Stokkum, R.J. Cogdell, and R. van Grondelle, An alternative carotenoid-to-bacteriochlorophyll energy transfer pathway in photosynthetic light harvesting, Proc. Natl. Acad. Sci. USA 99(9), 6017–6022 (2002),
http://dx.doi.org/10.1073/pnas.092626599
[69] T. Polívka and V. Sundström, Dark excited states of carotenoids: Consensus and controversy, Chem. Phys. Lett. 477(1–3), 1–11 (2009),
http://dx.doi.org/10.1016/j.cplett.2009.06.011
[70] E.E. Ostroumov, M.G.M.M. Reus, and A.R. Holzwarth, On the nature of the “dark S*” excited state of β-carotene, J. Phys. Chem. A 115(16), 3698–3712 (2011),
http://dx.doi.org/10.1021/jp105385c