Received 13 November 2015; revised 6 January 2016; accepted 25
March 2016
DERINAMO DAŽNIO FEMTOSEKUNDINĖ
PRIVERSTINĖS RAMANO SKLAIDOS SISTEMA, PAGRĮSTA SPEKTRIŠKAI
SUSIAURINTOS ANTROSIOS HARMONIKOS GENERAVIMU
References
/
Nuorodos
[1] P. Stoutland, R.
Dyer, and W. Woodruff, Ultrafast infrared spectroscopy, Science
257(5078), 1913–1917 (1992),
http://dx.doi.org/10.1126/science.1329200
[2] M.D. Fayer,
Ultrafast Infrared and Raman Spectroscopy
(CRC Press, New York, USA, 2001),
http://dx.doi.org/10.1201/9780203904763
[3] J. Knorr, P. Rudolf, and P. Nuernberger, A comparative study
on chirped-pulse upconversion and direct multichannel MCT
detection, Opt. Express
21(25), 30693–30706 (2013),
http://dx.doi.org/10.1364/OE.21.030693
[4] C.R. Baiz and K.J. Kubarych, Ultrabroadband detection of a
mid-IR continuum by chirped-pulse upconversion, Opt. Lett.
36(2),
187–189 (2011),
http://dx.doi.org/10.1364/OL.36.000187
[5] P. Kukura, D.W. McCamant, and R.A. Mathies, Femtosecond
stimulated Raman spectroscopy, Annu. Rev. Phys. Chem.
58(1),
461–488 (2007),
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104456
[6] D.W. McCamant, P. Kukura, and R.A. Mathies, Femtosecond
broadband stimulated Raman: a new approach for high-performance
vibrational spectroscopy, Appl. Spectrosc.
57(11),
1317–1323 (2003),
http://dx.doi.org/10.1366/000370203322554455
[7] D.W. McCamant, P. Kukura, S. Yoon, and R.A. Mathies,
Femtosecond broadband stimulated Raman spectroscopy: Apparatus
and methods, Rev. Sci. Instrum.
75(11), 4971–4980
(2004),
http://dx.doi.org/10.1063/1.1807566
[8] D.W. McCamant, P. Kukura, and R.A. Mathies, Femtosecond
time-resolved stimulated Raman spectroscopy: Application to the
ultrafast internal conversion in β-carotene, J. Phys. Chem. A
107(40),
8208–8214 (2003),
http://dx.doi.org/10.1021/jp030147n
[9] H. Kuramochi, S. Takeuchi, and T. Tahara, Ultrafast
structural evolution of photoactive yellow protein chromophore
revealed by ultraviolet resonance femtosecond stimulated Raman
spectroscopy, J. Phys. Chem. Lett.
3(15), 2025–2029
(2012),
http://dx.doi.org/10.1021/jz300542f
[10] C. Fang, R.R. Frontiera, R. Tran, and R.A. Mathies, Mapping
GFP structure evolution during proton transfer with femtosecond
Raman spectroscopy, Nature
462(7270), 200–204 (2009),
http://dx.doi.org/10.1038/nature08527
[11] S. Shim and R.A. Mathies, Development of a tunable
femtosecond stimulated Raman apparatus and its application to
β-carotene, J. Phys. Chem. B
112(15), 4826–4832 (2008),
http://dx.doi.org/10.1021/jp710518y
[12] P. Kukura, D.W. McCamant, and R.A. Mathies, Femtosecond
time-resolved stimulated Raman spectroscopy of the S
2
(1B
u+) excited state of β-carotene, J.
Phys. Chem. A
108(28), 5921–5925 (2004),
http://dx.doi.org/10.1021/jp0482971
[13] D.W. McCamant, P. Kukura, and R.A. Mathies, Femtosecond
stimulated Raman study of excited-state evolution in
bacteriorhodopsin, J. Phys. Chem. B
109(20), 10449–10457
(2005),
http://dx.doi.org/10.1021/jp050095x
[14] S. Frobel, L. Buschhaus, T. Villnow, O. Weingart, and P.
Gilch, The photoformation of a phthalide: a ketene intermediate
traced by FSRS, Phys. Chem. Chem. Phys.
17(1), 376–386
(2015),
http://dx.doi.org/10.1039/C4CP03351E
[15] D.P. Hoffman and R.A. Mathies, Photoexcited structural
dynamics of an azobenzene analog
4-nitro-4′-dimethylamino-azobenzene from femtosecond stimulated
Raman, Phys. Chem. Chem. Phys.
14(18), 6298–6306 (2012),
http://dx.doi.org/10.1039/c2cp23468h
[16] A.L. Dobryakov, I. Ioffe, A.A. Granovsky, N.P. Ernsting,
and S.A. Kovalenko, Femtosecond Raman spectra of cis-stilbene
and trans-stilbene with isotopomers in solution, J. Chem. Phys.
137(24), 244505 (2012),
http://dx.doi.org/10.1063/1.4769971
[17] A.L. Smeigh, M. Creelman, R.A. Mathies, and J.K. McCusker,
Femtosecond time-resolved optical and Raman spectroscopy of
photoinduced spin crossover: temporal resolution of low-to-high
spin optical switching, J. Am. Chem. Soc.
130(43),
14105–14107 (2008),
http://dx.doi.org/10.1021/ja805949s
[18] S. Yoon, P. Kukura, C.M. Stuart, and R.A. Mathies, Direct
observation of the ultrafast intersystem crossing in
tris(2,2-bipyridine)ruthenium(II) using femtosecond stimulated
Raman spectroscopy, Mol. Phys.
104(8), 1275–1282 (2006),
http://dx.doi.org/10.1080/00268970500525846
[19] T. Fujisawa, M. Creelman, and R.A. Mathies, Structural
dynamics of a noncovalent charge transfer complex from
femtosecond stimulated Raman spectroscopy, J. Phys. Chem. B
116(35),
10453–10460 (2012),
http://dx.doi.org/10.1021/jp3001306
[20] K.E. Brown, B.S. Veldkamp, D.T. Co, and M.R. Wasielewski,
Vibrational dynamics of a perylene–perylenediimide
donor–acceptor dyad probed with femtosecond stimulated Raman
spectroscopy, J. Phys. Chem. Lett.
3(17), 2362–2366
(2012),
http://dx.doi.org/10.1021/jz301107c
[21] R.M. Young, S.M. Dyar, J.C. Barnes, M. Juríček, J.F.
Stoddart, D.T. Co, and M.R. Wasielewski, Ultrafast
conformational dynamics of electron transfer in ExBox
4+⊂perylene,
J. Phys. Chem. A
117(47), 12438–12448 (2013),
http://dx.doi.org/10.1021/jp409883a
[22] E.M. Grumstrup, Z. Chen, R.P. Vary, A.M. Moran, K.S.
Schanze, and J.M. Papanikolas, Frequency modulated femtosecond
stimulated Raman spectroscopy of ultrafast energy transfer in a
donor–acceptor copolymer, J. Phys. Chem. B
117(27),
8245–8255 (2013),
http://dx.doi.org/10.1021/jp404498u
[23] R.R. Frontiera and R.A. Mathies, Polarization dependence of
vibrational coupling signals in femtosecond stimulated Raman
spectroscopy, J. Chem. Phys.
127(12), 124501 (2007),
http://dx.doi.org/10.1063/1.2780843
[24] S. Shim and R.A. Mathies, Femtosecond Raman-induced Kerr
effect spectroscopy, J. Raman Spectrosc.
39(11),
1526–1530 (2008),
http://dx.doi.org/10.1002/jrs.2109
[25] R.R. Frontiera, A.-I. Henry, N.L. Gruenke, and R.P. Van
Duyne, Surface-enhanced femtosecond stimulated Raman
spectroscopy, J. Phys. Chem. Lett.
2(10), 1199–1203
(2011),
http://dx.doi.org/10.1021/jz200498z
[26] D.P. Hoffman, S.R. Ellis, and R.A. Mathies,
Characterization of a conical intersection in a charge-transfer
dimer with two-dimensional time-resolved stimulated Raman
spectroscopy, J. Phys. Chem. A
118(27), 4955–4965
(2014),
http://dx.doi.org/10.1021/jp5041986
[27] D.T. Valley, D.P. Hoffman, and R.A. Mathies, Reactive and
unreactive pathways in a photochemical ring opening reaction
from 2D femtosecond stimulated Raman, Phys. Chem. Chem. Phys.
17(14),
9231–9240 (2015),
http://dx.doi.org/10.1039/C4CP05323K
[28] B. Dunlap, P. Richter, and D.W. McCamant, Stimulated Raman
spectroscopy using chirped pulses, J. Raman Spectrosc.
45(10),
918–929 (2014),
http://dx.doi.org/10.1002/jrs.4578
[29] K.E. Dorfman, F. Schlawin, and S. Mukamel, Stimulated Raman
spectroscopy with entangled light: enhanced resolution and
pathway selection, J. Phys. Chem. Lett.
5(16), 2843–2849
(2014),
http://dx.doi.org/10.1021/jz501124a
[30] R.R. Frontiera, C. Fang, J. Dasgupta, and R.A. Mathies,
Probing structural evolution along multidimensional reaction
coordinates with femtosecond stimulated Raman spectroscopy,
Phys. Chem. Chem. Phys.
14(2), 405–414 (2012),
http://dx.doi.org/10.1039/C1CP22767J
[31] B. Zhao, K. Niu, X. Li, and S.-Y. Lee, Simple aspects of
femtosecond stimulated Raman spectroscopy, Sci. China Chem.
54(12),
1989–2008 (2011),
http://dx.doi.org/10.1007/s11426-011-4430-8
[32] W. Rock, Y.-L. Li, P. Pagano, and C.M. Cheatum, 2D IR
spectroscopy using four-wave mixing, pulse shaping, and IR
upconversion: a quantitative comparison, J. Phys. Chem. A
117(29),
6073–6083 (2013),
http://dx.doi.org/10.1021/jp312817t
[33] W.R. Silva, E.L. Keller, and R.R. Frontiera, Determination
of resonance Raman cross-sections for use in biological SERS
sensing with femtosecond stimulated Raman spectroscopy, Anal.
Chem.
86(15), 7782–7787 (2014),
http://dx.doi.org/10.1021/ac501701h
[34] D. Verreault, V. Kurz, C. Howell, and P. Koelsch, Sample
cells for probing solid/liquid interfaces with broadband
sum-frequency-generation spectroscopy, Rev. Sci. Instrum.
81(6),
063111 (2010),
http://dx.doi.org/10.1063/1.3443096
[35] M.J. Nee, R. McCanne, K.J. Kubarych, and M. Joffre,
Two-dimensional infrared spectroscopy detected by chirped pulse
upconversion, Opt. Lett.
32(6), 713–715 (2007),
http://dx.doi.org/10.1364/OL.32.000713
[36] J. Zhu, T. Mathes, A.D. Stahl, J.T.M. Kennis, and M.L.
Groot, Ultrafast mid-infrared spectroscopy by chirped pulse
upconversion in 1800–1000 cm
–1 region, Opt. Express
20(10),
10562–10571 (2012),
http://dx.doi.org/10.1364/OE.20.010562
[37] W. Yu, P.J. Donohoo-Vallett, J. Zhou, and A.E. Bragg,
Ultrafast photo-induced nuclear relaxation of a conformationally
disordered conjugated polymer probed with transient absorption
and femtosecond stimulated Raman spectroscopies, J. Chem. Phys.
141(4), 044201 (2014),
http://dx.doi.org/10.1063/1.4890326
[38] A. Weigel and N.P. Ernsting, Excited stilbene:
intramolecular vibrational redistribution and solvation studied
by femtosecond stimulated Raman spectroscopy, J. Phys. Chem. B
114(23),
7879–7893 (2010),
http://dx.doi.org/10.1021/jp100181z
[39] S.A. Kovalenko, A.L. Dobryakov, and N.P. Ernsting, An
efficient setup for femtosecond stimulated Raman spectroscopy,
Rev. Sci. Instrum.
82(6), 063102 (2011),
http://dx.doi.org/10.1063/1.3596453
[40] L. Zhu, W. Liu, and C. Fang, A versatile femtosecond
stimulated Raman spectroscopy setup with tunable pulses in the
visible to near infrared, Appl. Phys. Lett.
105(4),
041106 (2014),
http://dx.doi.org/10.1063/1.4891766
[41] Light Conversion TOPAS-800, accessed 14/10/2015,
http://www.lightcon.com/upload/iblock/29d/29d33cd94596711304f676b78bc85064.pdf
[42] M.A. Marangoni, D. Brida, M. Quintavalle, G. Cirmi, F.M.
Pigozzo, C. Manzoni, F. Baronio, A.D. Capobianco, and G.
Cerullo, Narrow-bandwidth picosecond pulses by spectral
compression of femtosecond pulses in second-order nonlinear
crystals, Opt. Express
15(14), 8884–8891 (2007),
http://dx.doi.org/10.1364/OE.15.008884
[43] E. Pontecorvo, C. Ferrante, C.G. Elles, and T. Scopigno,
Spectrally tailored narrowband pulses for femtosecond stimulated
Raman spectroscopy in the range 330–750 nm, Opt. Express
21(6),
6866–6872 (2013),
http://dx.doi.org/10.1364/OE.21.006866
[44] V.G. Dmitriev, G.G. Gurzadyan, and D.N. Nikogosyan,
Handbook
of Nonlinear Optical Crystals (Springer, Berlin, Germany,
1999),
http://dx.doi.org/10.1007/978-3-540-46793-9
[45] E. Pontecorvo, S.M. Kapetanaki, M. Badioli, D. Brida, M.
Marangoni, G. Cerullo, and T. Scopigno, Femtosecond stimulated
Raman spectrometer in the 320–520 nm range, Opt. Express
19(2),
1107–1112 (2011),
http://dx.doi.org/10.1364/OE.19.001107
[46] D.P. Hoffman, O.P. Lee, J.E. Millstone, M.S. Chen, T.A. Su,
M. Creelman, J.M.J. Fréchet, and R.A. Mathies, Electron transfer
dynamics of triphenylamine dyes bound to TiO
2
nanoparticles from femtosecond stimulated Raman spectroscopy, J.
Phys. Chem. C
117(14), 6990–6997 (2013),
http://dx.doi.org/10.1021/jp400369b
[47] F. Han, W. Liu, and C. Fang, Excited-state proton transfer
of photoexcited pyranine in water observed by femtosecond
stimulated Raman spectroscopy, Chem. Phys.
422, 204–219
(2013),
http://dx.doi.org/10.1016/j.chemphys.2013.03.009
[48] M. Kloz, R. van Grondelle, and J.T.M. Kennis,
Wavelength-modulated femtosecond stimulated Raman spectroscopy –
approach towards automatic data processing, Phys. Chem. Chem.
Phys.
13(40), 18123–18133 (2011),
http://dx.doi.org/10.1039/c1cp21650c
[49] A. Weigel, A. Dobryakov, B. Klaumünzer, M. Sajadi, P.
Saalfrank, and N.P. Ernsting, Femtosecond stimulated Raman
spectroscopy of flavin after optical excitation, J. Phys. Chem.
B
115(13), 3656–3680 (2011),
http://dx.doi.org/10.1021/jp1117129
[50] S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and
P. Gilch, A femtosecond stimulated Raman spectrograph for the
near ultraviolet, Appl. Phys. B
85(4), 557–564 (2006),
http://dx.doi.org/10.1007/s00340-006-2386-8
[51] H. Ando, B.P. Fingerhut, K.E. Dorfman, J.D. Biggs, and S.
Mukamel, Femtosecond stimulated Raman spectroscopy of the
cyclobutane thymine dimer repair mechanism: a computational
study, J. Am. Chem. Soc.
136(42), 14801–14810 (2014),
http://dx.doi.org/10.1021/ja5063955
[52] J.R. Ferraro, K. Nakamoto, and C.W. Brown,
Introductory
Raman Spectroscopy (Academic Press, Amsterdam, The
Netherlands, 2003),
http://store.elsevier.com/product.jsp?isbn=9780122541056
[53] J. Dasgupta, R.R. Frontiera, K.C. Taylor, J.C. Lagarias,
and R.A. Mathies, Ultrafast excited-state isomerization in
phytochrome revealed by femtosecond stimulated Raman
spectroscopy, Proc. Natl. Acad. Sci. USA
106(6),
1784–1789 (2009),
http://dx.doi.org/10.1073/pnas.0812056106
[54] H.A. Frank and R.J. Cogdell, Carotenoids in photosynthesis,
Photochem. Photobiol.
63(3), 257–264 (1996),
http://dx.doi.org/10.1111/j.1751-1097.1996.tb03022.x
[55] B. Demmig-Adams and W.W. Adams III, The role of xanthophyll
cycle carotenoids in the protection of photosynthesis, Trends
Plant Sci.
1(1), 21–26 (1996),
http://dx.doi.org/10.1016/S1360-1385(96)80019-7
[56] Y. Koyama, M. Kuki, P.O. Andersson, and T. Gillbro, Singlet
excited states and the light-harvesting function of carotenoids
in bacterial photosynthesis, Photochem. Photobiol.
63(3),
243–256 (1996),
http://dx.doi.org/10.1111/j.1751-1097.1996.tb03021.x
[57] A. Young and G. Britton,
Carotenoids in Photosynthesis
(Springer Science & Business Media, Dordrecht, The
Netherlands, 1993),
http://dx.doi.org/10.1007/978-94-011-2124-8
[58] M. Kloz, R. van Grondelle, and J.T.M. Kennis, Correction
for the time dependent inner filter effect caused by transient
absorption in femtosecond stimulated Raman experiment, Chem.
Phys. Lett.
544, 94–101 (2012),
http://dx.doi.org/10.1016/j.cplett.2012.07.005
[59] T. Noguchi, S. Kolaczkowski, C. Arbour, S. Aramaki, G.H.
Atkinson, H. Hayashi, and M. Tasumi, Resonance Raman spectrum of
the excited 2
†A
g state of β-carotene,
Photochem. Photobiol.
50(5), 603–609 (1989),
http://dx.doi.org/10.1111/j.1751-1097.1989.tb04315.x
[60] D.W. McCamant, J.E. Kim, and R.A. Mathies, Vibrational
relaxation in β-carotene probed by picosecond Stokes and
anti-Stokes resonance Raman spectroscopy, J. Phys. Chem. A
106(25),
6030–6038 (2002),
http://dx.doi.org/10.1021/jp0203595
[61] J.-P. Zhang, L.H. Skibsted, R. Fujii, and Y. Koyama,
Transient absorption from the 1B
u+ state
of all-trans-β-carotene newly identified in the near-infrared
region, Photochem. Photobiol.
73(3), 219–222 (2001),
http://dx.doi.org/10.1562/0031-8655(2001)0730219TAFTUS2.0.CO2
[62] D.S. Larsen, E. Papagiannakis, I.H.M. van Stokkum, M.
Vengris, J.T.M. Kennis, and R. van Grondelle, Excited state
dynamics of β-carotene explored with dispersed multi-pulse
transient absorption, Chem. Phys. Lett.
381(5–6),
733–742 (2003),
http://dx.doi.org/10.1016/j.cplett.2003.10.016
[63] H. Hashimoto, Y. Koyama, Y. Hirata, and N. Mataga, S1 and
T1 species of β-carotene generated by direct photoexcitation
from the all-trans, 9-cis, 13-cis, and 15-cis isomers as
revealed by picosecond transient absorption and transient Raman
spectroscopies, J. Phys. Chem.
95(8), 3072–3076 (1991),
http://dx.doi.org/10.1021/j100161a022
[64] R.R. Frontiera, S. Shim, and R.A. Mathies, Origin of
negative and dispersive features in anti-Stokes and resonance
femtosecond stimulated Raman spectroscopy, J. Chem. Phys.
129(6),
064507 (2008),
http://dx.doi.org/10.1063/1.2966361
[65] Z. Sun, Z. Jin, J. Lu, D.H. Zhang, and S.-Y. Lee, Wave
packet theory of dynamic stimulated Raman spectra in femtosecond
pump-probe spectroscopy, J. Chem. Phys.
126(17), 174104
(2007),
http://dx.doi.org/10.1063/1.2715593
[66] D. Zigmantas, R.G. Hiller, V. Sundström, and T. Polívka,
Carotenoid to chlorophyll energy transfer in the
peridinin–chlorophyll-a–protein complex involves an
intramolecular charge transfer state, Proc. Natl. Acad. Sci. USA
99(26), 16760–16765 (2002),
http://dx.doi.org/10.1073/pnas.262537599
[67] V. Butkus, A. Gelzinis, R. Augulis, A. Gall, C. Büchel, B.
Robert, D. Zigmantas, L. Valkunas, and D. Abramavicius,
Coherence and population dynamics of chlorophyll excitations in
FCP complex: Two-dimensional spectroscopy study, J. Chem. Phys.
142(21), 212414 (2015),
http://dx.doi.org/10.1063/1.4914098
[68] E. Papagiannakis, J.T.M. Kennis, I.H.M. van Stokkum, R.J.
Cogdell, and R. van Grondelle, An alternative
carotenoid-to-bacteriochlorophyll energy transfer pathway in
photosynthetic light harvesting, Proc. Natl. Acad. Sci. USA
99(9),
6017–6022 (2002),
http://dx.doi.org/10.1073/pnas.092626599
[69] T. Polívka and V. Sundström, Dark excited states of
carotenoids: Consensus and controversy, Chem. Phys. Lett.
477(1–3),
1–11 (2009),
http://dx.doi.org/10.1016/j.cplett.2009.06.011
[70] E.E. Ostroumov, M.G.M.M. Reus, and A.R. Holzwarth, On the
nature of the “dark S*” excited state of β-carotene, J. Phys.
Chem. A
115(16), 3698–3712 (2011),
http://dx.doi.org/10.1021/jp105385c