Received 7 September 2015; revised 31 October 2015; accepted 25
March 2016
GELEŽIES (III) ACETATO,
POTENCIALIOS PRADINĖS MEDŽIAGOS METALOORGANINĖMS STRUKTŪROMS
(MOFs) GAUTI, SINTEZĖS YPATUMAI
References
/
Nuorodos
[1] K.I. Turte, S.G.
Shova, V. Meriacre, M. Daniec, and Y.A. Simonov, Synthesis and
structure of trinuclear iron acetate. J. Struct. Chem.
43,
108–117 (2002),
http://dx.doi.org/10.1023/A:1016082018299
[2] B.N. Figgis and G.B. Robertson, Crystal-molecular structure
and magnetic properties of Cr
3(CH
3.COO)
6
O Cl.5H
2O, Nature
205, 694–695 (1965),
http://dx.doi.org/10.1038/205694a0
[3] J. Burgess and M.V. Twigg, in:
Encyclopedia of Inorganic
Chemistry, ed. R. Bruce King (2011),
http://dx.doi.org/10.1002/0470862106.ia108
[4] R.C. Paul, R.C. Narula, and S.K. Vasisht, Iron (III)
acetates, Trans. Metal Chem.
3, 35–38 (1978),
http://dx.doi.org/10.1007/BF01393501
[5] K. Kluchova, R. Zboril, J. Tucek, M. Pecova, L. Zajoncova,
I. Safarik, M. Mashlan, I. Markova, D. Jancik, and M. Sebela,
Superparamagnetic maghemite nanoparticles from solid-state
synthesis – Their functionalization towards peroral MRI contrast
agent and magnetic carrier for trypsin immobilization,
Biomaterials
30, 2855–2863 (2009),
http://dx.doi.org/10.1016/j.biomaterials.2009.02.023
[6] J.R. Friedman and M.P. Sarachik, Single-molecule
nanomagnets, Annu. Rev. Cond. Matter Phys.
1, 109–128
(2010),
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104053
[7] F.M. Duarte, F.J. Maldonado-Hodar, and L.M. Madeira,
Influence of the iron precursor in the preparation of
heterogeneous Fe/activated carbon Fenton-like catalysts, Appl.
Catal. A
458, 39–47 (2013),
http://dx.doi.org/10.1016/j.apcata.2013.03.030
[8] D. Nastou, B. Fernandez-Fernandez, U. Elewa, L.
Gonzalez-Espinoza, E. Gonzalez-Parra, M.D. Sanchez-Nino, and A.
Ortiz, Next-generation phosphate binders: Focus on iron-based
binders, Drugs
74, 863–877 (2014),
http://dx.doi.org/10.1007/s40265-014-0224-6
[9] M. Diab and T. Mokari, Thermal decomposition approach for
the formation of alpha-Fe
2O
3 mesoporous
photoanodes and an alpha-Fe
2O
3/CoO hybrid
structure for enhanced water oxidation, Inorg. Chem.
53,
2304–2309 (2014),
http://dx.doi.org/10.1021/ic403027r
[10] Z.U. Rahman, Y.L. Dong, C.L. Ren, Z.Y. Zhang, and X.G.
Chen, Protein adsorption on citrate modified magnetic
nanoparticles, J. Nanosci. Nanotechnol.
12, 2598–2606
(2012),
http://dx.doi.org/10.1166/jnn.2012.5751
[11] T. Wang, S. Zhou, C.H. Zhang, J.B. Lian, Y. Liang, and W.X.
Yuan, Facile synthesis of hematite nanoparticles and nanocubes
and their shape-dependent optical properties, New J. Chem.
38,
46–49 (2014),
http://dx.doi.org/10.1039/C3NJ01060K
[12] K.H. Shen, J.W. Wang, Y. Li, Y.S. Wang, and Y. Li,
Preparation of magnetite core–shell nanoparticles of Fe
3O
4
and carbon with aryl sulfonyl acetic acid, Mater. Res. Bull.
48,
4655–4660 (2013),
http://dx.doi.org/10.1016/j.materresbull.2013.07.040
[13] M.Y. Zhu and G.W. Diao, Synthesis of porous Fe
3O
4
nanospheres and its application for the catalytic degradation of
xylenol orange, J. Phys. Chem. C
115, 18923–18934
(2011),
http://dx.doi.org/10.1021/jp200418j
[14] X. Pedro, J.J. Alvarez, Q. Li, Applications of
nanotechnology in water and wastewater treatment, Water Res.
47,
3942 (2013),
http://dx.doi.org/10.1016/j.watres.2012.09.058
[15] M.M. Pendergast and E.M.V. Hoek, A review of water
treatment membrane nanotechnologies, Energy Environ. Sci.
4,
1946–1971 (2011),
http://dx.doi.org/10.1039/C0EE00541J
[16] M. Cazacu, A. Vlad, C. Turta, and G. Lisa, New iron–cobalt
clusters with silicon-containing dicarboxylic acids, Centr. Eur.
J. Chem.
10, 1079–1086 (2012),
http://dx.doi.org/10.2478/s11532-012-0022-5
[17] S.Kr. Das, S.P. Mahantaa, K.K. Bania, Oxidative coupling of
2-naphthol by zeolite-Y supported homo and heterometallic
trinuclear acetate clusters, RSC Adv.
4, 51496–51509
(2014),
http://dx.doi.org/10.1039/C4RA10103K
[18] C.E. Sumner Jr, Interconversion of dinuclear and
oxo-centered trinuclear cobaltic acetates, Inorg. Chem.
27,
1320–1327 (1988),
http://dx.doi.org/10.1021/ic00281a004
[19] P. Rathi, D.P. Singh, and P. Surain, Synthesis,
characterization, powder XRD and antimicrobial-antioxidant
activity evaluation of trivalent transition metal macrocyclic
complexes, Compt. Rendus Chem.
18, 430–437 (2015),
http://dx.doi.org/10.1016/j.crci.2014.08.002
[20] N. Abdullah, M.H. Elsheikh, N.M.J.N. Ibrahim, S.M. Said,
M.F.M. Sabri, M.H. Hassan, and A. Marlina, Magnetic, thermal,
mesomorphic and thermoelectric properties of mononuclear,
dimeric and polymeric iron(II) complexes with conjugated
ligands, RSC Adv.
5, 50999–51007 (2015),
http://dx.doi.org/10.1039/c5ra07100c
[21] C.X. Yang, H.B. Ren, and X.P. Yan, Fluorescent metal
organic framework MIL-53(Al) for highly selective and sensitive
detection of Fe
3+ in aqueous solution, Anal. Chem.
85,
7441–7446 (2013),
http://dx.doi.org/10.1021/ac401387z
[22] M. Pilloni, F. Padella, G. Ennas, S.R. Lai, M. Bellusci, E.
Rombi, F. Sini, M. Pentimalli, C. Delitala, and A. Scano,
Liquid-assisted mechanochemical synthesis of an iron carboxylate
metal organic framework and its evaluation in diesel fuel
desulfurization, Micropor. Mesopor. Mater.
213, 14–21
(2015),
http://dx.doi.org/10.1016/j.micromeso.2015.04.005
[23] S.K. Xian, J.J. Peng, Z.J. Zhang, Q.B. Xia, H.H. Wang, and
Z. Li, Highly enhanced and weakened adsorption properties of two
MOFs by water vapor for separation of CO
2/CH
4
and CO
2/N
2 binary mixtures, Chem. Eng. J.
270, 385–392 (2015),
http://dx.doi.org/10.1016/j.cej.2015.02.041
[24] X.M. Quan, Y.D. Liu, and H.J. Choi, Magnetorheology of iron
associated magnetic metal-organic framework nanoparticle, J.
Appl. Phys.
117, 17C732 (2015),
http://dx.doi.org/10.1063/1.4916110
[25] R. Sibille, T. Mazet, B. Malaman, Q.R. Wang, E. Didelot,
and M. François, Site-dependent substitutions in mixed-metal
metal-organic frameworks: A case study and guidelines for
analogous systems, Chem. Mater.
27, 133–140 (2015),
http://dx.doi.org/10.1021/cm503570f
[26] I.E. Grey, H.E.A. Brand, M.S. Rumsey, and Y. Gozukara,
Ultra-flexible framework breathing in response to dehydration in
liskeardite, [(Al, Fe
16(AsO
4)
9(OH)
21(H
2O)
11)]·26H
2O,
a natural open-framework compound, J. Solid State Chem.
228,
146–152 (2015),
http://dx.doi.org/10.1016/j.jssc.2015.04.035
[27] M.A.A. Elmasry, A. Gaber, and E.M.H. Khater, Thermal
decomposition of Ni(II) and Fe(III) acetate and their mixture,
J. Therm. Anal.
47, 757–763 (1996),
http://dx.doi.org/10.1007/BF01981811
[28] F. Quiles and A. Burneaus, Infrared and Raman spectra of
alkaline-earth and copper (II) acetates in aqueous solutions,
Vibr. Spectr.
16, 105–117 (1998),
http://dx.doi.org/10.1016/S0924-2031(98)00004-6
[29] K. Nakamoto,
Infrared and Raman Spectra of Inorganic
and Coordination Compounds, Part B (John Wiley and Sons,
Inc., New York, 1997),
http://dx.doi.org/10.1002/9780470405840
[30] K. Ito and H.J. Bernstein, The vibrational spectra of the
formiate, acetate, and oxalate ions, Canad. J. Chem.
4,
170–178 (1956),
http://dx.doi.org/10.1139/v56-021
[31] K.M. Parida, T. Mishra, D. Das, and S.N. Chintalpudi,
Thermal transformation of trinuclear Fe (III) acetate complex
intercalated montmorillonite, Appl. Clay Sci.
15,
463–475 (1999),
http://dx.doi.org/10.1016/S0169-1317(99)00035-6
[32] N. Malathi and S.P. Puri, Mössbauer-effect study of iron
(III) acetate and its chloro-derivatives, J. Phys. Soc. Jpn.
29,
108–111 (1970),
http://dx.doi.org/10.1143/JPSJ.29.108
[33] J.H. Yoon, S.B. Choi, Y.J. Oh, M.J. Seo, and Y.H. Jhon, A
porous mixed-valent iron MOF exhibiting the
acs net:
Synthesis, characterization and sorption behavior of Fe
3O(F
4BDC)
3(H
2O)
3(DMF)
3.5,
Catal. Today
120, 326–327 (2007),
http://dx.doi.org/10.1016/j.cattod.2006.09.003
[34] S. Zhang, Z. Jiao, and W. Yao, A simple solvothermal
process for fabrication of a metal-organic framework with an
iron oxide enclosure for the determination of organophosphorus
pesticides in biological samples, J. Chrom. A
1371,
74–75 (2014),
http://dx.doi.org/10.1016/j.chroma.2014.10.088