Received 19 June 2015; revised 28 September 2015; accepted 25
March 2016
VULKANINĖS KILMĖS RŪGŠTINIŲ
SULFATŲ NEUTRALIZACIJA AMONIAKU AEROZOLIO DALELĖSE
References
/
Nuorodos
[1] M.M. Halmer, H.-U.
Schmincke, and H.-F. Graf, The annual volcanic gas input into
the atmosphere, in particular into the stratosphere: a global
data set for the past 100 years, J. Volcanol. Geotherm. Res.
115,
511–528 (2002),
http://dx.doi.org/10.1016/S0377-0273(01)00318-3
[2] S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B.
Averyt, M. Tignor, and H.L. Miller,
Climate Change 2007: The
Physical Science Basis, Contribution of Working Group I to the
Fourth Assessment Report of the Intergovernmental Panel on
Climate Change (Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 2007),
http://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.htm
[3] M. Guffanti, T.J. Casadevall, and K. Budding,
Encounters
of Aircraft with Volcanic Ash Clouds: a Compilation of Known
Incidents 1953–2009, U.S. Geological Survey Data Series
545, Version 1.0, plus 4 appendixes including the Compilation
Database (2010),
https://pubs.usgs.gov/ds/545/DS545.pdf
[4] J.A. Adame, M.D. Valenti-Pia, and M. Gil-Ojeda, Impact
evaluation of potential volcanic plumes over Spain, Atmos. Res.
160, 39–49 (2015),
http://dx.doi.org/10.1016/j.atmosres.2015.03.002
[5] J. Ovadnevaite, D. Ceburnis, K. Plauskaite-Sukiene, R.
Modini, R. Dupuy, I. Rimselyte, R. Ramonet, K. Kvietkus, Z.
Ristovski, H. Berresheim, and C. O'Dowd, Volcanic sulphate and
Arctic dust plumes over the North Atlantic Ocean, Atmos.
Environ.
43(32), 4968–4974 (2009),
http://dx.doi.org/10.1016/j.atmosenv.2009.07.007
[6] V.M. Kerminen, J.V. Niemi, H. Timonen, M. Aurela, A. Frey,
S. Carbone, S. Saarikoski, K. Teinilä, J. Hakkarainen, J.
Tamminen, J. Vira, M. Prank, M. Sofiev, and R. Hillamo,
Characterization of a volcanic ash episode in southern Finland
caused by the Grimsvötn eruption in Iceland in May 2011, Atmos.
Chem. Phys.
11, 12227–12239 (2011),
http://dx.doi.org/10.5194/acp-11-12227-2011
[7] K. Kvietkus, J. Šakalys, J. Didžbalis, I. Garbarienė, N.
Špirkauskaitė, and V. Remeikis, Atmospheric aerosol episodes
over Lithuania after the May 2011 volcano eruption at Grimsvötn,
Iceland, Atmos. Res.
122, 93–101 (2013),
http://dx.doi.org/10.1016/j.atmosres.2012.10.014
[8] S.N. Behera, M. Sharma, V.P. Aneja, and R. Balasubramanian,
Ammonia in the atmosphere: a review on emission sources,
atmospheric chemistry and deposition on terrestrial bodies,
Environ. Sci. Pollut. Res.
20(11), 8092–8131 (2013),
http://dx.doi.org/10.1007/s11356-013-2051-9
[9] A.A. Mensah, R. Holzinger, R. Otjes, A. Trimborn, Th.F.
Mentel, H. ten Brink, B. Henzing, and A. Kiendler-Scharr,
Aerosol chemical composition at Cabauw, The Netherlands as
observed in two intensive periods in May 2008 and March 2009,
Atmos. Chem. Phys.
12(10), 4723–4742 (2011),
http://dx.doi.org/10.5194/acp-12-4723-2012
http://dx.doi.org/10.5194/acpd-11-27661-2011
[10] J. Liggio, S.-M. Li, A. Vlasenko, C. Stroud, and P. Makar,
Depression of ammonia uptake to sulfuric acid aerosols by
competing uptake of ambient organic gases, Environ. Sci.
Technol.
45(7), 2790–2796 (2011),
http://dx.doi.org/10.1021/es103801g
[11] J.A. Fisher, D.J. Jacob, Q. Wang, R. Bahreini, C.C.
Carouge, M.J. Cubison, J.E. Dibb, T. Diehl, J.L. Jimenez, E.M.
Leibensperger, M.B.J. Meinders, H.O.T. Pye, P.K. Quinn, S.
Sharma, A. van Donkelaar, and R.M. Yantosca, Sources,
distribution, and acidity of sulfate–ammonium aerosol in the
Arctic in winter–spring, Atmos. Environ.
45, 7301–7318
(2011),
http://dx.doi.org/10.1016/j.atmosenv.2011.08.030
[12] S.T. Martin, H.M. Hung, R.J. Park, D.J. Jacob, R.J.D.
Spurr, K.V. Chance, and M. Chin, Effects of the physical state
of tropospheric ammonium–sulfate–nitrate particles on global
aerosol direct radiative forcing, Atmos. Chem. Phys.
4,
183–214 (2004),
http://dx.doi.org/10.5194/acp-4-183-2004
[13] K.J. Baustian, M.E. Wise, and M.A. Tolbert, Depositional
ice nucleation on solid ammonium sulfate and glutaric acid
particles, Atmos. Chem. Phys.
10, 2307–2317 (2010),
http://dx.doi.org/10.5194/acp-10-2307-2010
[14] P.K. Quinn, T.S. Bates, E. Baum, N. Doubleday, A.M. Fiore,
M. Flanner, A. Fridlind, T.J. Garrett, D. Koch, and S. Menon,
Short-lived pollutants in the Arctic: their climate impact and
possible mitigation strategies, Atmos. Chem. Phys.
8,
1723–1735 (2008),
http://dx.doi.org/10.5194/acp-8-1723-2008
[15] G. Biskos, P.R. Buseck, and S.T. Martin, Hygroscopic growth
of nucleation-mode acidic sulfate particles, Aerosol. Sci.
40,
338–347 (2009),
http://dx.doi.org/10.1016/j.jaerosci.2008.12.003
[16] L. Skrabalova, D. Brus, T. Anttila, V. Zdimal, and H.
Lihavainen, Growth of sulphuric acid nanoparticles under wet and
dry conditions, Atmos. Chem. Phys.
14, 6461–6475 (2014),
http://dx.doi.org/10.5194/acp-14-6461-2014
[17] M. Kulmala, L. Laakso, K.E.J. Lehtinen, I. Riipinen, M. Dal
Maso, T. Anttila, V.-M. Kerminen, U. Horrak, M. Vana, and H.
Tammet, Initial steps of aerosol growth, Atmos. Chem. Phys.
4,
2553–2560 (2004),
http://dx.doi.org/10.5194/acp-4-2553-2004
[18] P.H. Mcmurry, H. Takano, and G.R. Anderson, Study of the
ammonia (gas)–sulfuric acid (aerosols) reaction rate, Environ.
Sci. Technol.
17(6) (1983),
http://dx.doi.org/10.1021/es00112a008
[19] J.T. Jayne, D.C. Leard, X.F. Zhang, P. Davidovits, K.A.
Smith, C.E. Kolb, and D.R. Worsnop, Development of an aerosol
mass spectrometer for size and composition analysis of submicron
particles, Aerosol Sci. Technol.
33(1–2), 49–70 (2000),
http://dx.doi.org/10.1080/027868200410840
[20] J.L. Jimenez, J.T. Jayne, Q. Shi, C.E. Kolb, D.R. Worsnop,
I. Yourshaw, J.H. Seinfeld, R.C. Flagan, X.F. Zhang, K.A. Smith,
J.W. Moris, and P. Davidovits, Ambient aerosol sampling using
the aerodyne aerosol mass spectrometer, J. Geophys. Res.
108(D7),
8245–8258 (2003),
http://dx.doi.org/10.1029/2001JD001213
[21] J.D. Allan, J.L. Jimenez, P.I. Williams, M.R. Alfara, K.N.
Bower, J.T. Jane, H. Coe, and D.R. Worsnop, Quantitative
sampling using Aerodyne aerosol mass spectrometer: 1. Techniques
of data interpretation and error analysis, J. Geophys. Res.
108(D3),
4090–4100 (2003),
http://dx.doi.org/10.1029/2002JD002358
[22] K. Kvietkus, J. Šakalys, I. Rimšelytė, J. Ovadnevaitė, V.
Remeikis, and V. Špakauskas, Characterization of aerosol sources
at urban and background sites in Lithuania, Lith. J. Phys.
51(1),
65–74 (2011),
http://dx.doi.org/10.3952/lithjphys.51106
[23] I. Garbarienė, K. Kvietkus, J. Šakalys, J. Ovadnevaitė, and
D. Čeburnis, Biogenic and anthropogenic organic matter in
aerosol over Continental Europe: source characterization in the
east Baltic region, J. Atmos. Chem.
69(2), 159–174
(2012),
http://dx.doi.org/10.1007/s10874-012-9232-7
[24] R.R. Draxler and G.D. Rolph,
HYSPLIT (Hybrid
Single-Particle Lagrangian Integrated Trajectory) Model Access
via National Oceanic and Atmospheric Administration (NOAA) ARL
READY Website (NOAA Air Resources Laboratory, College
Park, MD, 2003), accessed: February 2015,
http://ready.arl.noaa.gov/HYSPLIT.php
[25] N. Metropolis and S. Ulam, The Monte Carlo Method, J. Amer.
Stat. Assoc.
44, 335–341 (1949),
http://dx.doi.org/10.1080/01621459.1949.10483310
[26] R. Glasow, N. Bobrowski, and C. Kern, The effects of
volcanic eruptions on atmospheric chemistry, Chem. Geol.
263,
131–142 (2009),
http://dx.doi.org/10.1016/j.chemgeo.2008.08.020
[27] H. Bao, S. Yu, and D.Q. Tong, Massive volcanic SO2
oxidation and sulfate aerosol deposition in Cenozoic North
America, Nature
465, 909–912 (2010),
http://dx.doi.org/10.1038/nature09100
[28] T.H. Gan, P. Hield, B. Boere, M. Bentley, T. Cogdon, P.J.
Hanhela, B. Anderson, and R. Gillett, in:
Proceedings of
15th ETH-Conference on Combustion Generated Nanoparticles
(Zurich, Switzerland, June 26–29, 2011)
[29] B.J. Turpin and H.J. Lim, Species contributions to PM2.5
mass concentrations: Revisiting common assumptions for
estimating organic mass, Aerosol Sci. Technol.
35(1),
602–610 (2001),
http://dx.doi.org/10.1080/02786820119445
[30] L. Xing, T.M. Fu, J.J. Cao, S.C. Lee, G.H. Wang, K.F. Ho,
M.C. Cheng, C.F. You, and T.J. Wang, Seasonal and spatial
variability of the OM/OC mass ratios and high regional
correlation between oxalic acid and zinc in Chinese urban
organic aerosols, Atmos. Chem. Phys.
13, 4307–4318
(2013),
http://dx.doi.org/10.5194/acp-13-4307-2013
[31] C. Mohr, P.F. DeCarlo, M.F. Heringa, R. Chirico, J.G.
Slowik, R. Richter, C. Reche, A. Alastuey, X. Querol, R. Seco,
J. Pe-uelas, J.L. Jiménez, M. Crippa, R. Zimmermann, U.
Baltensperger, and A.S.H. Prévôt, Identification and
quantification of organic aerosol from cooking and other sources
in Barcelona using aerosol mass spectrometer data, Atmos. Chem.
Phys.
12, 1649–1665 (2012),
http://dx.doi.org/10.5194/acp-12-1649-2012
[32] Q. Zhang, M.R. Canagaratna, J.T. Jayne, D.R. Worsnop, and
J.L. Jimenez, Time- and size-resolved chemical composition of
submicron particles in Pittsburgh: Implications for aerosol
sources and processes, J. Geophys. Res.
110, D07S09
(2005),
http://dx.doi.org/10.1029/2004JD004649
[33] J.M. Flores, R.Z. Bar-Or, N. Bluvshtein, A. Abo-Riziq, A.
Kostinski, S. Borrmann, I. Koren, and Y. Rudich, Absorbing
aerosols at high relative humidity: linking hygroscopic growth
to optical properties, Atmos. Chem. Phys.
12, 5511–5521
(2012),
http://dx.doi.org/10.5194/acp-12-5511-2012
[34] R. Jeanicke, Atmospheric aerosols and global climate, J.
Aerosol Sci.
11, 577–588 (1980),
http://dx.doi.org/10.1016/0021-8502(80)90131-7