Received 26 November 2015; revised 22 January 2016; accepted 25
March 2016
BALTYMU STABILIZUOTI AUKSO NANO
KLASTERIAI: SPEKTRINIŲ SAVYBIŲ IR FOTOSTABILUMO TYRIMAI
References
/
Nuorodos
[1] J. Zheng, J.T.
Petty, and R.M. Dickson, High quantum yield blue emission from
water-soluble Au
8 nanodots, J. Am. Chem. Soc.
125(26),
7780–7781 (2003),
http://dx.doi.org/10.1021/ja035473v
[2] S.W. Chen, R.S. Ingram, M.J. Hostetler, J.J. Pietron, R.W.
Murray, T.G. Schaaff, J.T. Khoury, M.M. Alvarez, and R.L.
Whetten, Gold nanoelectrodes of varied size: transition to
molecule-like charging, Science
280(5372), 2098–2101
(1998),
http://dx.doi.org/10.1126/science.280.5372.2098
[3] S. Empedocles and M. Bawendi, Spectroscopy of single CdSe
nanocrystallites, Acc. Chem. Res.
32(5), 389–396 (1999),
http://dx.doi.org/10.1021/ar9501939
[4] J.P. Xie, Y.G. Zheng, and J.Y. Ying, Protein-directed
synthesis of highly fluorescent gold nanoclusters, J. Am. Chem.
Soc.
131(3), 888–889 (2009),
http://dx.doi.org/10.1021/ja806804u
[5] H. Wei, Z.D. Wang, L.M. Yang, S.L. Tian, C.J. Hou, and Y.
Lu, Lysozyme-stabilized gold fluorescent cluster: synthesis and
application as Hg
2+ sensor, Analyst
135(6),
1406–1410 (2010),
http://dx.doi.org/10.1039/C0AN00046A
[6] K. Chaudhari, P.L. Xavier, and T. Pradeep, Understanding the
evolution of luminescent gold quantum clusters in protein
templates, ACS Nano
5(11), 8816–8827 (2011),
http://dx.doi.org/10.1021/nn202901a
[7] E.S. Shibu, B. Radha, P.K. Verma, P. Bhyrappa, G.U.
Kulkarni, S.K. Pal, and T. Pradeep, Functionalized Au
22
clusters: synthesis, characterization and patterning, ACS Appl.
Mater. Interfaces
1(10), 2199–2210 (2009),
http://dx.doi.org/10.1021/am900350r
[8] R.C. Jin, H.F. Qian, Z.K. Wu, Y. Zhu, M.Z. Zhu, A. Mohanty,
and N. Garg, A methodology for synthesizing atomically precise
gold nanoclusters, J. Phys. Chem. Lett.
1(19), 2903–2910
(2010),
http://dx.doi.org/10.1021/jz100944k
[9] Y.L. Xu, J. Sherwood, Y. Qin, D. Crowley, M. Bonizzoni, and
Y.P. Bao, The role of protein characteristics in the formation
and fluorescence of Au nanoclusters, Nanoscale
6(3),
1515–1524 (2014),
http://dx.doi.org/10.1039/C3NR06040C
[10] X. Yuan, Y. Yu, Q.F. Yao, Q.B. Zhang, and J.P. Xie, Fast
synthesis of thiolated Au
25 nanoclusters via
protection-deprotection method, J. Phys. Chem. Lett.
3(17),
2310–2314 (2012),
http://dx.doi.org/10.1021/jz300960b
[11] Z.W. Wu, C. Gayathri, R.R. Gil, and R.C. Jin, Probing the
structure and charge state of glutathione-capped Au
25(SG)
18
clusters by NMR and mass spectrometry, J. Am. Chem. Soc.,
131(18),
6535–6542 (2009),
http://dx.doi.org/10.1021/ja900386s
[12] D.E. Jiang, M. Walter, and J. Akola, On the structure of a
thiolated gold cluster: Au
44(SR)
282–,
J. Phys. Chem. C
114(38), 15883–15889 (2010),
http://dx.doi.org/10.1021/jp9097342
[13] X.M. Wen, P. Yu, Y.R. Toh, and J. Tang,
Structure-correlated dual fluorescent bands in BSA-protected Au
25
nanoclusters, J. Phys. Chem. C
116(21), 11830–11836
(2012),
http://dx.doi.org/10.1021/jp303530h
[14] S.L. Raut, D. Shumilov, R. Chib, R. Rich, Z. Gryczynski,
and I. Gryczynski, Two photon induced luminescence of BSA
protected gold clusters, Chem. Phys. Lett.
561, 74–76
(2013),
http://dx.doi.org/10.1016/j.cplett.2013.01.028
[15] P. Yu, X.M. Wen, Y.R. Toh, and J. Tang,
Temperature-dependent fluorescence in Au
10
nanoclusters, J. Phys. Chem. C
116(11), 6567–6571
(2012),
http://dx.doi.org/10.1021/jp2120077
[16] S. Raut, R. Chib, R. Rich, D. Shumilov, Z. Gryczynski, and
I. Gryczynski, Polarization properties of fluorescent BSA
protected Au
25 nanoclusters, Nanoscale
5(8),
3441–3446 (2013),
http://dx.doi.org/10.1039/C3NR34152F
[17] M. Matulionytė, R. Marcinonytė, and R. Rotomskis,
Photoinduced spectral changes of photoluminescent gold
nanoclusters, J. Biomed. Opt.
20(5), 051018 (2015),
http://dx.doi.org/10.1117/1.JBO.20.5.051018
[18] H. Kawasaki, H. Yamamoto, H. Fujimori, R. Arakawa, Y.
Iwasaki, and M. Inada, Stability of the DMFprotected Au
nanoclusters: photochemical, dispersion, and thermal properties,
Langmuir
26(8), 5926–5933 (2010),
http://dx.doi.org/10.1021/la9038842
[19] H. Kawasaki, K. Yoshimura, K. Hamaguchi, and R. Arakawa,
Trypsin-stabilized fluorescent gold nanocluster for sensitive
and selective Hg
2+ detection, Anal. Sci.
27(6),
591–596 (2011),
http://dx.doi.org/10.2116/analsci.27.591
[20] C.A.J. Lin, T.Y. Yang, C.H. Lee, S.H. Huang, R.A. Sperling,
M. Zanella, J.K. Li, J.L. Shen, H.H. Wang, H.I. Yeh, W.J. Parak,
and W.H. Chang, Characterization, and bioconjugation of
fluorescent gold nanoclusters toward biological labeling
applications, ACS Nano
3(2), 395–401 (2009),
http://dx.doi.org/10.1021/nn800632j
[21] Y.F. Kong, J. Chen, F. Gao, R. Brydson, B. Johnson, G.
Heath, Y. Zhang, L. Wu, and D.J. Zhou, Near-infrared fluorescent
ribonuclease-A-encapsulated gold nanoclusters: preparation,
characterization, cancer targeting and imaging, Nanoscale
5(3),
1009–1017 (2013),
http://dx.doi.org/10.1039/C2NR32760K
[22] L.H. Jin, L. Shang, S.J. Guo, Y.X. Fang, D. Wen, L. Wang,
J.Y. Yin, and S.J. Dong, Biomolecule-stabilized Au nanoclusters
as a fluorescence probe for sensitive detection of glucose,
Biosens. Bioelectron.
26(5), 1965–1969 (2011),
http://dx.doi.org/10.1016/j.bios.2010.08.019
[23] X.X. Wang, Y.Y. Wang, H.B. Rao, and Z. Shan, A sensitive
fluorescent assay for trypsin activity in biological samples
using BSA-Au nanoclusters, J. Brazil. Chem. Soc.
23(11),
2011–2015 (2012),
http://dx.doi.org/10.1590/S0103-50532012005000075
[24] H.W. Li, Y. Yue, T.Y. Liu, D.M. Li, and Y.Q. Wu,
Fluorescence-enhanced sensing mechanism of BSA-protected small
gold-nanoclusters to silver(I) ions in aqueous solutions, J.
Phys. Chem. C
117(31), 16159–16165 (2013),
http://dx.doi.org/10.1021/jp403466b
[25] X. Wu, X.X. He, K.M. Wang, C. Xie, B. Zhou, and Z.H. Qing,
Ultrasmall near-infrared gold nanoclusters for tumor
fluorescence imaging
in vivo, Nanoscale
2(10),
2244–2249 (2010),
http://dx.doi.org/10.1039/c0nr00359j
[26] A. Retnakumari, S. Setua, D. Menon, P. Ravindran, H.
Muhammed, T. Pradeep, S. Nair, and M. Koyakutty,
Molecular-receptor-specific, nontoxic, near-infrared-emitting Au
cluster-protein nanoconjugates for targeted cancer imaging,
Nanotechnology
21(5), 055103 (2010),
http://dx.doi.org/10.1088/0957-4484/21/5/055103
[27] A.L. Zhang, Y. Tu, S.B. Qin, Y. Li, J.Y. Zhou, N. Chen, Q.
Lu, and B.B. Zhang, Gold nanoclusters as contrast agents for
fluorescent and X-ray dual-modality imaging, J. Colloid. Interf.
Sci.
372, 239–244 (2012),
http://dx.doi.org/10.1016/j.jcis.2012.01.005
[28] G.Y. Sun, L. Zhou, Y.L. Liu, and Z.B. Zhao, Biocompatible
Gd-III-functionalized fluorescent gold nanoclusters for optical
and magnetic resonance imaging, New J. Chem.
37(4),
1028–1035 (2013),
http://dx.doi.org/10.1039/C3NJ00052D
[29] Z. Wu and R. Jin, On the ligand’s role in the fluorescence
of gold nanoclusters, Nano Lett.
10(7), 2568–2573
(2010),
http://dx.doi.org/10.1021/nl101225f
[30] X. Le Guevel, B. Hotzer, G. Jung, K. Hollemeyer, V.
Trouillet, and M. Schneider, Formation of fluorescent metal (Au,
Ag) nanoclusters capped in bovine serum albumin followed by
fluorescence and spectroscopy, J. Phys. Chem. C
115(22),
10955–10963 (2011),
http://dx.doi.org/10.1021/jp111820b
[31] Y. Moriyama, D. Ohta, K. Hachiya, Y. Mitsui, and K. Takeda,
Fluorescence behavior of tryptophan residues of bovine and human
serum albumins in ionic surfactant solutions: A comparative
study of the two and one tryptophan(s) of bovine and human
albumins, J. Protein Chem.
15(3), 265–272 (1996),
http://dx.doi.org/10.1007/BF01887115
[32] S. Raut, R. Chib, S. Butler, J. Borejdo, Z. Gryczynski, and
I. Gryczynski, Evidence of energy transfer from tryptophan to
BSA/HSA protected gold nanoclusters, Methods Appl. Fluoresc.
2(3)
(2014),
http://dx.doi.org/10.1088/2050-6120/2/3/035004
[33] R. Chib, S. Butler, S. Raut, S. Shah, J. Borejdo, Z.
Gryczynski, and I. Gryczynski, Effect of quencher, denaturants,
temperature and pH on the fluorescent properties of BSA
protected gold nanoclusters, J. Lumin.
168, 62–68
(2015),
http://dx.doi.org/10.1016/j.jlumin.2015.07.030
[34] J.R. Lakowicz,
Principles of Fluorescence Spectroscopy,
3rd ed. (Springer, Singapore, 2006) pp. 577–606,
http://dx.doi.org/10.1007/978-0-387-46312-4
[35] A.K. Wright and M.R. Thompson, Hydrodynamic structure of
bovine serum albumin determined by transient electric
birefringence, Biophys. J.
15, 137–141 (1975),
http://dx.doi.org/10.1016/S0006-3495(75)85797-3
[36] J. Zheng, P.R. Nicovich, and R.M. Dickson, Highly
fluorescent noble-metal quantum dots, Annu. Rev. Phys. Chem.
58,
409–431 (2007),
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104546
[37] X.M. Wen, P. Yu, Y.R. Toh, A.C. Hsu, Y.C. Lee, and J. Tang,
Fluorescence dynamics in BSA-protected Au
25
nanoclusters, J. Phys. Chem. C
116(35), 19032–19038
(2012),
http://dx.doi.org/10.1021/jp305902w
[38] B. Mali, A.I. Dragan, J. Karolin, and C.D. Geddes,
Photophysical characterization and
α-type delayed
luminescence of rapidly prepared Au clusters, J. Phys. Chem. C
117(32),
16650–16657 (2013),
http://dx.doi.org/10.1021/jp4023184
[39] P.L. Xavier, K. Chaudhari, P.K. Verma, S.K. Pal, and T.
Pradeep, Luminescent quantum clusters of gold in transferrin
family protein, lactoferrin exhibiting FRET, Nanoscale
2(12),
2769–2776 (2010),
http://dx.doi.org/10.1039/C0NR00377H
[40] T. Das, P. Ghosh, M.S. Shanavas, A. Maity, S. Mondal, and
P. Purkayastha, Protein-templated gold nanoclusters: size
dependent inversion of fluorescence emission in the presence of
molecular oxygen, Nanoscale
4(19), 6018–6024 (2012),
http://dx.doi.org/10.1039/C2NR31271A
[41] A.N. Kuznetsov, B. Ebert, G. Lassmann, and A.B. Shapiro,
Adsorption of small molecules to bovine serum albumin studied by
the spin-probe method, Biochim. Biophys. Acta
379(1),
139–146 (1975),
http://dx.doi.org/10.1016/0005-2795(75)90015-X
[42] V.J.C. Lin and J.L. Koenig, Raman studies of bovine serum
albumin, Biopolymers
15(1), 203–218 (1975),
http://dx.doi.org/10.1002/bip.1976.360150114
[43] J. Oakes, Thermally denatured proteins. Nuclear magnetic
resonance, binding isotherm and chemical modification studies of
thermally denatured bovine serum albumin, J. Chem. Soc., Faraday
Trans.
1, 72, 228–237 (1976),
http://dx.doi.org/10.1039/F19767200228
[44] R. Wetzel, M. Becker, J. Behlke, H. Billwitz, S. Böhm, B.
Ebert, H. Hamann, J. Krumbiegel, and G. Lassmann, Temperature
behaviour of human serum albumin, Eur. J. Biochem.
104(2),
469–478 (1980),
http://dx.doi.org/10.1111/j.1432-1033.1980.tb04449.x
[45] V. Poderys, M. Matulionyte, A. Selskis, and R. Rotomskis,
Interaction of water-soluble CdTe quantum dots with bovine serum
albumin, Nanoscale Res. Lett.
6, 1–6 (2011),
http://dx.doi.org/10.1007/s11671-010-9740-9
[46] W. Zhang, Y. Li, J. Niu, and Y. Chen, Photogeneration of
reactive oxygen species on uncoated silver, gold, nickel, and
silicon nanoparticles and their antibacterial effects, Langmuir
29(15), 4647–4651 (2013),
http://dx.doi.org/10.1021/la400500t
[47] M. Misawa and J. Takahashi, Generation of reactive oxygen
species induced by gold nanoparticles under x-ray and UV
irradiations, Nanomedicine
7(5), 604–614 (2011),
http://dx.doi.org/10.1016/j.nano.2011.01.014
[48] H. Kawasaki, S. Kumar, G. Li, C.J. Zeng, D.R. Kauffman, J.
Yoshimoto, Y. Iwasaki, and R.C. Jin, Generation of singlet
oxygen by photoexcited Au
25(SR)
18
clusters, Chem. Mater.
26(9), 2777–2788 (2014),
http://dx.doi.org/10.1021/cm500260z