Vitaly V. Porsev, Andrei V. Bandura, and Robert A. Evarestov
References
/
Nuorodos
[1] Y. Wang, K.
Takahashi, H. Shang, and G. Cao, Synthesis and electrochemical
properties of vanadium pentoxide nanotube arrays, J. Phys. Chem.
B
109(8), 3085–3088 (2005),
http://dx.doi.org/10.1021/jp044286w
[2] J.S. Bonso, A. Rahy, S.D. Perera, N. Nour, O. Seitz, Y.J.
Chabal, K.J. Balkus Jr., J.P. Ferraris, and D.J. Yang,
Exfoliated graphite nanoplatelets–V
2O
5
nanotube composite electrodes for supercapacitors, J. Power
Sources
203, 227–232 (2012),
http://dx.doi.org/10.1016/j.jpowsour.2011.09.084
[3] G. Gu, M. Schmid, P.-W. Chiu, A. Minett, J. Fraysse, G.-T.
Kim, S. Roth, M. Kozlov, E. Muñoz, and R.H. Baughman, V
2O
5
nanofibre sheet actuators, Nature Mater.
2, 316–319
(2003),
http://dx.doi.org/10.1038/nmat880
[4] C. Zhou, L. Mai, Y. Liu, Y. Qi, Y. Dai, and W. Chen,
Synthesis and field emission property of V
2O
5·nH
2O
nanotube arrays, J. Phys. Chem. C
111(23), 8202–8205
(2007),
http://dx.doi.org/10.1021/jp0722509
[5] P.M. Ajayan, O. Stephan, P. Redlich, and C. Colliex, Carbon
nanotubes as removable templates for metal oxide nanocomposites
and nanostructures, Nature
375, 564–567 (1995),
http://dx.doi.org/10.1038/375564a0
[6] R.A. Evarestov,
Theoretical Modeling of Inorganic
Nanostructures. Symmetry and Ab-initio Calculations of
Nanolayers, Nanotubes and Nanowires, Springer Series in
NanoScience and Technology (Springer, Berlin–Heidelberg, 2015),
http://dx.doi.org/10.1007/978-3-662-44581-5
[7] G. Zhu, Z. Qu, G. Zhuang, Q. Xie, Q. Meng, and J. Wang, CO
oxidation by lattice oxygen on V
2O
5
nanotubes, J. Phys. Chem. C
115(30), 14806–14811 (2011),
http://dx.doi.org/10.1021/jp2026175
[8] J.M. Cocciantelli, P. Gravereau, J.P. Doumerc, M. Pouchard,
and P. Hagenmuller, On the preparation and characterization of a
new polymorph of V
2O
5, J. Solid State
Chem.
93(2), 497–502 (1991),
http://dx.doi.org/10.1016/0022-4596(91)90323-A
[9] M.B. Smirnov, E.M. Roginskii, V.Yu. Kazimirov, K.S. Smirnov,
R. Baddour-Hadjean, J.P. Pereira-Ramos, and V.S. Zhandun,
Spectroscopic and computational study of structural changes in
γ-LiV
2O
5
cathodic material induced by lithium intercalation, J. Phys.
Chem. C
119(36), 20801–20809 (2015),
http://dx.doi.org/10.1021/acs.jpcc.5b05540
[10] N. Pinna, M. Willinger, K. Weiss, J. Urban, and R. Schlögl,
Local structure of nanoscopic materials: V
2O
5
nanorods and nanowires, Nano Lett.
3(8), 1131–1134
(2003),
http://dx.doi.org/10.1021/nl034326s
[11] V.V. Porsev, A.V. Bandura, and R.A. Evarestov, Hybrid
Hartree–Fock-density functional theory study of V
2O
5
three phases: Comparison of bulk and layer stability, electron
and phonon properties, Acta Mater.
75, 246–258 (2014),
http://dx.doi.org/10.1016/j.actamat.2014.04.068
[12] V.V. Porsev, A.V. Bandura, and R.A. Evarestov,
Ab
initio modeling of single wall nanotubes folded from
α-
and
γ-V
2O
5 monolayers: structural,
electronic and vibrational properties, CrystEngComm
17(17),
3277–3285 (2015),
http://dx.doi.org/10.1039/C5CE00144G
[13] V.V. Porsev, A.V. Bandura, and R.A. Evarestov, Theoretical
study of
α-V
2O
5-based double-wall
nanotubes, ChemPhysChem
16(14), 3007–3014 (2015),
http://dx.doi.org/10.1002/cphc.201500354
[14] J.P. Perdew, K. Burke, and M. Ernzerhof, Rationale for
mixing exact exchange with density functional approximations, J.
Chem. Phys.
105(22), 9982–9985 (1996),
http://dx.doi.org/10.1063/1.472933
[15] C. Adamo and V. Barone, Toward reliable density functional
methods without adjustable parameters: The PBE0 model, J. Chem.
Phys.
110, 6158–6170 (1999),
http://dx.doi.org/10.1063/1.478522
[16] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M.
Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M.
Harrison, I.J. Bush, P. D'Arco, and M. Llunell,
CRYSTAL09
User's Manual (University of Torino, Torino, 2010),
http://www.crystal.unito.it/Manuals/crystal09.pdf
[17] R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V.R.
Saunders, and C.M. Zicovich-Wilson, CRYSTAL: a computational
tool for the
ab initio study of the electronic
properties of crystals, Z. Kristallogr.
220, 571–573
(2005),
http://dx.doi.org/10.1524/zkri.220.5.571.65065
[18] M.F. Peintinger, D.V. Oliveira, and T. Bredow, Consistent
Gaussian basis sets of triple-zeta valence with polarization
quality for solid-state calculations, J. Comput. Chem.
34(6),
451–459 (2013),
http://dx.doi.org/10.1002/jcc.23153
[19] S. Grimme, Semiempirical GGA-type density functional
constructed with a long-range dispersion correction, J. Comput.
Chem.
27(15), 1787–1799 (2006),
http://dx.doi.org/10.1002/jcc.20495
[20] T. Bučko, J. Hafner, S. Lebègue, and J.G. Ángyán, Improved
description of the structure of molecular and layered crystals:
Ab initio DFT calculations with van der Waals
corrections, J. Phys. Chem. A
114(43), 11814–11824
(2010),
http://dx.doi.org/10.1021/jp106469x
[21] A.V. Bandura, R.A. Evarestov, and S.I. Lukyanov, Structure
reconstruction of TiO
2-based multiwall nanotubes:
first-principles calculations, Phys. Chem. Chem. Phys.
16,
14781–14791 (2014),
http://dx.doi.org/10.1039/c4cp00903g
[22] H.J. Monkhorst and J.D. Pack, Special points for
Brillouin-zone integrations, Phys. Rev. B
13(12),
5188–5192 (1976),
http://dx.doi.org/10.1103/PhysRevB.13.5188
[23] V. Shklover, T. Haibach, F. Ried, R. Nesper, and P. Novák,
Crystal structure of the product of Mg
2+ insertion
into V
2O
5 single crystals, J. Solid State
Chem.
123(2), 317–323 (1996),
http://dx.doi.org/10.1006/jssc.1996.0186
[24] R. Enjalbert and J. Galy, A refinement of the structure of
V
2O
5, Acta Cryst. C
42, 1467–1469
(1986),
http://dx.doi.org/10.1107/S0108270186091825
[25] J.M. Cocciantelli, P. Gravereau, J.P. Doumerc, M. Pouchard,
and P. Hagenmuller, On the preparation and characterization of a
new polymorph of V
2O
5, J. Solid State
Chem.
93(2), 497–502 (1991),
http://dx.doi.org/10.1016/0022-4596(91)90323-A
[26] A. Ghosh, E.J. Ra, M. Jin, H.-K. Jeong, T.H. Kim, C.
Biswas, and Y.H. Lee, High pseudocapacitance from ultrathin V
2O
5
films electrodeposited on self-standing carbon-nanofiber paper,
Adv. Funct. Mater.
21(13), 2541–2547 (2011),
http://dx.doi.org/10.1002/adfm.201002603
[27] R. Gruehn, Eine weitere neue Modifikation des
Niobpentoxides, J. Less Common Met.
11(2), 119–126
(1966),
http://dx.doi.org/10.1016/0022-5088(66)90076-2
[28] L. Kihlborg, The crystal structure of (Mo
0.3V
0.7)
2O
5
of R-Nb
2O
5 type and a comparison with the
structure of V
2O
5 and V
2MoO
8,
Acta Chem. Scand.
21, 2495–2502 (1967),
http://dx.doi.org/10.3891/acta.chem.scand.21-2495
[29] J. Galy, Vanadium pentoxide and vanadium oxide bronzes –
Structural chemistry of single (S) and double (D) layer
MxV
2O
5
phases, J. Solid State Chem.
100, 229–245 (1992),
http://dx.doi.org/10.1016/0022-4596(92)90097-F
[30] H.P. Beck and S. Kohaut, A DFT study on the correlation
between topology and Bader charges: Part II, effects of
compression and dilatation of V
2O
5, Solid
State Sci.
43, 1–8 (2015),
http://dx.doi.org/10.1016/j.solidstatesciences.2015.03.011