[PDF]    http://dx.doi.org/10.3952/physics.v56i2.3304

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 86–91 (2016)


SHIELDING EFFECTS IN THIN FILMS OF CARBON NANOTUBES WITHIN MICROWAVE RANGE
Alesia Paddubskayaa, Mikhail Shubab, Gintaras Valušisa, Polina Kuzhirb, Sergey Maksimenkob, Alexander Okotrubc, Emmanuel Flahautd, Anne Marie Galibertd, Brigitte Soulad, Vanessa Fierroe, and Alain Celzarde
aCenter for Physical Sciences and Technology, Savanorių 231, LT-01108 Vilnius, Lithuania
E-mail: paddubskaya@gmail.com
bInstitute for Nuclear Problems, Belarus State University, Bobruiskaya Str. 11, 220050 Minsk, Belarus
cNikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Acad. Lavrentiev Ave. 3, 630090 Novosibirsk, Russia
dUniversity de Toulouse; CNRS/UPS/INP; Institut Carnot CIRIMAT, 118, route de Narbonne, F-31062 Toulouse Cedex 9, France
eInstitut Jean Lamour – UMR CNRS – Université de Lorraine 7198, ENSTIB, 27 rue Philippe Seguin, CS 60036, 88026 Epinal Cedex, France

Received 7 October 2015; revised 19 February 2016; accepted 21 June 2016

The electromagnetic shielding properties of thin films comprising different types of carbon nanotubes (CNTs) were analysed in the microwave frequency range (26–36 GHz). A comparative analysis of the shielding properties was achieved for films based on long and short single-, double- and multi-walled CNTs. The experimental results proved that long-length single-walled CNTs demonstrate the highest interaction with the electromagnetic (EM) field, thereby providing the best shielding efficiency. At the same time, double-walled CNTs demonstrate a higher level of absorption ability (50%) along with the overall high EM shielding efficiency (88%), which makes them attractive for using in nanoelectronics screens as they produce the smallest secondary EM pollution.
Keywords: microwave frequency range, electromagnetic response, carbon nanotubes
PACS: 77.84.Jd, 78.67.Ch

EKRANAVIMO REIŠKINIAI PLONUOSIUOSE ANGLIES NANOVAMZDELIŲ SLUOKSNIUOSE MIKROBANGŲ RUOŽE

Alesia Paddubskayaa, Mikhail Shubab, Gintaras Valušisa, Polina Kuzhirb, Sergey Maksimenkob, Alexander Okotrubc, Emmanuel Flahautd, Anne Marie Galibertd, Brigitte Soulad, Vanessa Fierroe, Alain Celzarde
aFizinių ir technologijos mokslų centras, Vilnius, Lietuva
bBaltarusijos valstybinis universitetas, Minskas, Baltarusija
cRusijos mokslų akademijos Sibiro skyriaus Nikolajevo neorganinės chemijos institutas, Novosibirskas, Rusija
dTulūzos universitetas, Prancūzija
eLotaringijos universitetas, Prancūzija

Naujų ultralengvų ir mažų gamybos sąnaudų reikalaujančių nanomedžiagų paieška bei tyrimai yra vienas svarbiausių uždavinių gerinant mikrobangų ruožo elektroninių prietaisų darbo patikimumą. Šiame darbe tyrinėjami ekranavimo reiškiniai plonuosiuose sluoksniuose, sudarytuose iš įvairaus ilgio vienasienių, dvisienių ir daugiasienių anglies nanovamzdelių. Eksperimentiniai tyrimai 26–36 GHz dažnių ruože parodė, kad ekranavimo efektyvumas priklauso nuo anglies nanovamzdelių ilgio. Ilgi nanovamzdeliai intensyviai sąveikauja su mikrobangų elektromagnetiniu lauku ir užtikrina didžiausią ekranavimo efektyvumą. Sluoksniuose su trumpais anglies nanovamzdeliais stebimas silpnas slopinimas dėl stipriai pasireiškiančio depoliarizacijos efekto. Lyginant rezultatus prieita prie išvados, kad ilgi pavieniai anglies nanovamzdeliai labiau tinkami bendram efektyviam ekranavimui (88 % efektyvumas), dvisieniai nanovamzdeliai geriau absorbuoja mikrobangų spinduliuotę (50 % absorbcija), todėl tinkami naudoti kaip nanoelektriniai ekranai, padedantys išvengti papildomos elektromagnetinių bangų interferencijos, o daugiasieniai nanovamzdeliai ekranuoja mažiausia (55 % efektyvumas), bet išlieka tinkama absorbuojanti nanomedžiaga tirtajame dažnių ruože.

References / Nuorodos

[1] N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, and J.-K. Kim, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding, Adv. Mater. 26, 5480–5487 (2014),
http://dx.doi.org/10.1002/adma.201305293
[2] P. Verma, P. Saini, and V. Choudhary, Designing of carbon nanotube/polymer composites using melt recirculation approach: effect of aspect ratio on mechanical, electrical and EMI shielding response, Mater. Des. 88, 269–277 (2015),
http://dx.doi.org/10.1016/j.matdes.2015.08.156
[3] M. Dragoman, K. Grenier, D. Dubuc, L. Bary, E. Fourn, R. Plana, and E. Flahaut, Experimental determination of microwave attenuation and electrical permittivity of double-walled carbon nanotubes, Appl. Phys. Lett. 88(15), 153108 (2006),
http://dx.doi.org/10.1063/1.2193464
[4] F. Bourdiol, D. Dubuc, K. Grenierc, F. Mouchet, L. Gauthier, E. Flahaut, Quantitative detection of carbon nanotubes in biological samples by an original method based on microwave permittivity measurements, Carbon 81, 535–545 (2015),
http://dx.doi.org/10.1016/j.carbon.2014.09.086
[5] A.G. Paddubskaya, P.P. Kuzhir, V.L. Kuznetsov, I.N. Mazov, S.I. Moseenkov, A.V. Ishchenko, A.I. Romanenko, O.B. Anikeeva, and T.I. Buryakov, CNT/PMMA electromagnetic coating: effect of carbon nanotube diameter, Fuller. Nanotub. Carbon Nanostr. 20, 527–530 (2012),
http://dx.doi.org/10.1080/1536383X.2012.656054
[6] A. Paddubskaya, D. Bychanok, A. Plyushch, P. Kuzhir, A. Nemilentsau, S. Maksimenko, S. Bellucci, L. Coderoni, F. Micciulla, I. Sacco, G. Rinaldi, J. Macutkevic, D. Seliuta, G. Valusis, and J. Banys, Epoxy resin/SWCNT shielding paint for super-high-frequency range, J. Nanoelectron. Optoelectron. 7(1), 81–86 (2012),
http://dx.doi.org/10.1166/jno.2012.1222
[7] M.V. Shuba, A.V. Melnikov, A.G. Paddubskaya, P.P. Kuzhir, and S.A. Maksimenko, Role of finite-size effects in the microwave and subterahertz electromagnetic response of a multiwall carbon-nanotube-based composite: Theory and interpretation of experiments, Phys. Rev. B 88(4), 045436 (2013),
http://dx.doi.org/10.1166/jno.2012.1222
[8] S. Pacchini, D. Dubuc, E. Flahaut, and K. Greniera, Double-walled carbon nanotube-based polymer composites for electromagnetic protection, Int. J. Microw. Wirel. Technol. 2(5), 487–495 (2010),
http://dx.doi.org/10.1017/S1759078710000668
[9] J.B. Bai and A. Allaoui, Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites – experimental investigation, Compos. A 34(8), 689–694 (2003),
http://dx.doi.org/10.1016/S1359-835X(03)00140-4
[10] I. Dubnikova, E. Kuvardina, V. Krasheninnikov, S. Lomakin, I. Tchmutin, and S. Kuznetsov, The effect of multiwalled carbon nanotube dimensions on the morphology, mechanical, and electrical properties of melt mixed polypropylene-based composites, J. Appl. Polym. Sci. 117(1), 259–272 (2010),
http://dx.doi.org/10.1002/app.31979
[11] D.S. Bychanok, M.V. Shuba, P.P. Kuzhir, S.A. Maksimenko, V.V. Kubarev, M.A. Kanygin, O.V. Sedelnikova, L.G. Bulusheva, and A.V. Okotrub, Anisotropic electromagnetic properties of polymer composites containing oriented multi-wall carbon nanotubes in respect to terahertz polarizer applications, J. Appl. Phys. 114(11), 114304 (2013),
http://dx.doi.org/10.1063/1.4821773
[12] L. Liu, L.B. Kong, W.Y. Yin, and S. Matitsine, Characterization of single- and multiwalled carbon nanotube composites for electromagnetic shielding and tunable applications, IEEE Trans. Electromagn. Compat. 53(4), 943–949 (2011),
http://dx.doi.org/10.1109/TEMC.2011.2159798
[13] Z.P. Wu and J.N. Wang, Preparation of large-area double-walled carbon nanotube films and application as film heater, Physica E 42(1), 77–81 (2009),
http://dx.doi.org/10.1016/j.physe.2009.09.003
[14] Z.P. Wu, M.M. Li, Y.Y. Hu, Y.S. Li, Z.X. Wang, Y.H. Yin, Y.S. Chen, and X. Zhou, Electromagnetic interference shielding of carbon nanotube macrofilms, Scripta Mater. 64(9), 809–812 (2011),
http://dx.doi.org/10.1016/j.scriptamat.2011.01.002
[15] L.L. Wang, B.K. Tay, K.Y. See, Z. Sun, L.K. Tan, and D. Lua, Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing, Carbon 47(8), 1905–1910 (2009),
http://dx.doi.org/10.1016/j.carbon.2009.03.033
[16] E. Flahaut, R. Bacsa, A. Peigney, and C. Laurent, Gram-scale CCVD synthesis of double-walled carbon nanotubes, Chem. Commun. (12), 1442–1443 (2003),
http://dx.doi.org/10.1039/B301514A
[17] E. Flahaut, A. Peigney, W.S. Bacsa, R.R. Bacsa, and C. Laurent, CCVD synthesis of carbon nanotubes from (Mg Co, Mo)O catalysts: influence of the proportions of cobalt and molybdenum, J. Mater. Chem. 14(4), 646–653 (2004),
http://dx.doi.org/10.1039/B312367G
[18] M.V. Shuba, A.G. Paddubskaya, P.P. Kuzhir, S.A. Maksimenko, V.K. Ksenevich, G. Niaura, D. Seliuta, I. Kasalynas, and G. Valusis, Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids, Nanotechnol. 23(49), 495714 (2012),
http://dx.doi.org/10.1088/0957-4484/23/49/495714
[19] Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou,  K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, and A.G. Rinzler, Transparent, conductive carbon nanotube films, Science 305(5688), 1273–1276 (2004),
http://dx.doi.org/10.1126/science.1101243
[20] S.Y. Chew, S.H. Ng, J. Wang,  P. Novák, F. Krumeich, S.L. Chou, J. Chend, and H.K. Liu, Flexible frees-tanding carbon nanotubes films for model lithium-ion batteries, Carbon 47(13), 2976–2983 (2009),
http://dx.doi.org/10.1016/j.carbon.2009.06.045
[21] F. Hennrich, S. Lebedkin, S. Malik, J. Tracey, M. Barczewski, H. Roesner, and M. Kappes, Preparation, characterization and applications of free-standing single walled carbon nanotube thin films, Phys. Chem. Chem. Phys. 4(11), 2273–2277 (2002),
http://dx.doi.org/10.1039/B201570F
[22] F. Hennrich, R. Wellmann, S. Malik, S. Lebedkin, and M. Kappes, Reversible modification of the absorption properties of single-walled carbon nanotube thin films via nitric acid exposure, Phys. Chem. Chem. Phys. 5(1), 178–183 (2003),
http://dx.doi.org/10.1039/B208270E
[23] L.F. Chen, C.K. Ong, C.P. Neo, V.V. Varadan, and V.K. Varadan, Microwave Electronics: Measurement and Materials at Microwave Frequencies (John Wiley & Sons, UK, 2004),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470844922.html