Received 7 October 2015; revised 19 February 2016; accepted 21
June 2016
EKRANAVIMO REIŠKINIAI
PLONUOSIUOSE ANGLIES NANOVAMZDELIŲ SLUOKSNIUOSE MIKROBANGŲ
RUOŽE
Naujų ultralengvų ir mažų gamybos sąnaudų
reikalaujančių nanomedžiagų paieška bei tyrimai yra vienas
svarbiausių uždavinių gerinant mikrobangų ruožo elektroninių
prietaisų darbo patikimumą. Šiame darbe tyrinėjami ekranavimo
reiškiniai plonuosiuose sluoksniuose, sudarytuose iš įvairaus
ilgio vienasienių, dvisienių ir daugiasienių anglies
nanovamzdelių. Eksperimentiniai tyrimai 26–36 GHz dažnių ruože
parodė, kad ekranavimo efektyvumas priklauso nuo anglies
nanovamzdelių ilgio. Ilgi nanovamzdeliai intensyviai sąveikauja
su mikrobangų elektromagnetiniu lauku ir užtikrina didžiausią
ekranavimo efektyvumą. Sluoksniuose su trumpais anglies
nanovamzdeliais stebimas silpnas slopinimas dėl stipriai
pasireiškiančio depoliarizacijos efekto. Lyginant rezultatus
prieita prie išvados, kad ilgi pavieniai anglies nanovamzdeliai
labiau tinkami bendram efektyviam ekranavimui (88 %
efektyvumas), dvisieniai nanovamzdeliai geriau absorbuoja
mikrobangų spinduliuotę (50 % absorbcija), todėl tinkami naudoti
kaip nanoelektriniai ekranai, padedantys išvengti papildomos
elektromagnetinių bangų interferencijos, o daugiasieniai
nanovamzdeliai ekranuoja mažiausia (55 % efektyvumas), bet
išlieka tinkama absorbuojanti nanomedžiaga tirtajame dažnių
ruože.
References
/
Nuorodos
[1] N. Yousefi, X. Sun,
X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, and J.-K.
Kim, Highly aligned graphene/polymer nanocomposites with
excellent dielectric properties for high-performance
electromagnetic interference shielding, Adv. Mater.
26,
5480–5487 (2014),
http://dx.doi.org/10.1002/adma.201305293
[2] P. Verma, P. Saini, and V. Choudhary, Designing of carbon
nanotube/polymer composites using melt recirculation approach:
effect of aspect ratio on mechanical, electrical and EMI
shielding response, Mater. Des.
88, 269–277 (2015),
http://dx.doi.org/10.1016/j.matdes.2015.08.156
[3] M. Dragoman, K. Grenier, D. Dubuc, L. Bary, E. Fourn, R.
Plana, and E. Flahaut, Experimental determination of microwave
attenuation and electrical permittivity of double-walled carbon
nanotubes, Appl. Phys. Lett.
88(15), 153108 (2006),
http://dx.doi.org/10.1063/1.2193464
[4] F. Bourdiol, D. Dubuc, K. Grenierc, F. Mouchet, L. Gauthier,
E. Flahaut, Quantitative detection of carbon nanotubes in
biological samples by an original method based on microwave
permittivity measurements, Carbon
81, 535–545 (2015),
http://dx.doi.org/10.1016/j.carbon.2014.09.086
[5] A.G. Paddubskaya, P.P. Kuzhir, V.L. Kuznetsov, I.N. Mazov,
S.I. Moseenkov, A.V. Ishchenko, A.I. Romanenko, O.B. Anikeeva,
and T.I. Buryakov, CNT/PMMA electromagnetic coating: effect of
carbon nanotube diameter, Fuller. Nanotub. Carbon Nanostr.
20,
527–530 (2012),
http://dx.doi.org/10.1080/1536383X.2012.656054
[6] A. Paddubskaya, D. Bychanok, A. Plyushch, P. Kuzhir, A.
Nemilentsau, S. Maksimenko, S. Bellucci, L. Coderoni, F.
Micciulla, I. Sacco, G. Rinaldi, J. Macutkevic, D. Seliuta, G.
Valusis, and J. Banys, Epoxy resin/SWCNT shielding paint for
super-high-frequency range, J. Nanoelectron. Optoelectron.
7(1),
81–86 (2012),
http://dx.doi.org/10.1166/jno.2012.1222
[7] M.V. Shuba, A.V. Melnikov, A.G. Paddubskaya, P.P. Kuzhir,
and S.A. Maksimenko, Role of finite-size effects in the
microwave and subterahertz electromagnetic response of a
multiwall carbon-nanotube-based composite: Theory and
interpretation of experiments, Phys. Rev. B
88(4),
045436 (2013),
http://dx.doi.org/10.1166/jno.2012.1222
[8] S. Pacchini, D. Dubuc, E. Flahaut, and K. Greniera,
Double-walled carbon nanotube-based polymer composites for
electromagnetic protection, Int. J. Microw. Wirel. Technol.
2(5),
487–495 (2010),
http://dx.doi.org/10.1017/S1759078710000668
[9] J.B. Bai and A. Allaoui, Effect of the length and the
aggregate size of MWNTs on the improvement efficiency of the
mechanical and electrical properties of nanocomposites –
experimental investigation, Compos. A
34(8), 689–694
(2003),
http://dx.doi.org/10.1016/S1359-835X(03)00140-4
[10] I. Dubnikova, E. Kuvardina, V. Krasheninnikov, S. Lomakin,
I. Tchmutin, and S. Kuznetsov, The effect of multiwalled carbon
nanotube dimensions on the morphology, mechanical, and
electrical properties of melt mixed polypropylene-based
composites, J. Appl. Polym. Sci.
117(1), 259–272 (2010),
http://dx.doi.org/10.1002/app.31979
[11] D.S. Bychanok, M.V. Shuba, P.P. Kuzhir, S.A. Maksimenko,
V.V. Kubarev, M.A. Kanygin, O.V. Sedelnikova, L.G. Bulusheva,
and A.V. Okotrub, Anisotropic electromagnetic properties of
polymer composites containing oriented multi-wall carbon
nanotubes in respect to terahertz polarizer applications, J.
Appl. Phys.
114(11), 114304 (2013),
http://dx.doi.org/10.1063/1.4821773
[12] L. Liu, L.B. Kong, W.Y. Yin, and S. Matitsine,
Characterization of single- and multiwalled carbon nanotube
composites for electromagnetic shielding and tunable
applications, IEEE Trans. Electromagn. Compat.
53(4),
943–949 (2011),
http://dx.doi.org/10.1109/TEMC.2011.2159798
[13] Z.P. Wu and J.N. Wang, Preparation of large-area
double-walled carbon nanotube films and application as film
heater, Physica E
42(1), 77–81 (2009),
http://dx.doi.org/10.1016/j.physe.2009.09.003
[14] Z.P. Wu, M.M. Li, Y.Y. Hu, Y.S. Li, Z.X. Wang, Y.H. Yin,
Y.S. Chen, and X. Zhou, Electromagnetic interference shielding
of carbon nanotube macrofilms, Scripta Mater.
64(9),
809–812 (2011),
http://dx.doi.org/10.1016/j.scriptamat.2011.01.002
[15] L.L. Wang, B.K. Tay, K.Y. See, Z. Sun, L.K. Tan, and D.
Lua, Electromagnetic interference shielding effectiveness of
carbon-based materials prepared by screen printing, Carbon
47(8),
1905–1910 (2009),
http://dx.doi.org/10.1016/j.carbon.2009.03.033
[16] E. Flahaut, R. Bacsa, A. Peigney, and C. Laurent,
Gram-scale CCVD synthesis of double-walled carbon nanotubes,
Chem. Commun. (12), 1442–1443 (2003),
http://dx.doi.org/10.1039/B301514A
[17] E. Flahaut, A. Peigney, W.S. Bacsa, R.R. Bacsa, and C.
Laurent, CCVD synthesis of carbon nanotubes from (Mg Co, Mo)O
catalysts: influence of the proportions of cobalt and
molybdenum, J. Mater. Chem.
14(4), 646–653 (2004),
http://dx.doi.org/10.1039/B312367G
[18] M.V. Shuba, A.G. Paddubskaya, P.P. Kuzhir, S.A. Maksimenko,
V.K. Ksenevich, G. Niaura, D. Seliuta, I. Kasalynas, and G.
Valusis, Soft cutting of single-wall carbon nanotubes by low
temperature ultrasonication in a mixture of sulfuric and nitric
acids, Nanotechnol.
23(49), 495714 (2012),
http://dx.doi.org/10.1088/0957-4484/23/49/495714
[19] Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M.
Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F.
Hebard, and A.G. Rinzler, Transparent, conductive carbon
nanotube films, Science
305(5688), 1273–1276 (2004),
http://dx.doi.org/10.1126/science.1101243
[20] S.Y. Chew, S.H. Ng, J. Wang, P. Novák, F. Krumeich,
S.L. Chou, J. Chend, and H.K. Liu, Flexible frees-tanding carbon
nanotubes films for model lithium-ion batteries, Carbon
47(13),
2976–2983 (2009),
http://dx.doi.org/10.1016/j.carbon.2009.06.045
[21] F. Hennrich, S. Lebedkin, S. Malik, J. Tracey, M.
Barczewski, H. Roesner, and M. Kappes, Preparation,
characterization and applications of free-standing single walled
carbon nanotube thin films, Phys. Chem. Chem. Phys.
4(11),
2273–2277 (2002),
http://dx.doi.org/10.1039/B201570F
[22] F. Hennrich, R. Wellmann, S. Malik, S. Lebedkin, and M.
Kappes, Reversible modification of the absorption properties of
single-walled carbon nanotube thin films via nitric acid
exposure, Phys. Chem. Chem. Phys.
5(1), 178–183 (2003),
http://dx.doi.org/10.1039/B208270E
[23] L.F. Chen, C.K. Ong, C.P. Neo, V.V. Varadan, and V.K.
Varadan,
Microwave Electronics: Measurement and Materials at
Microwave Frequencies (John Wiley & Sons, UK, 2004),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470844922.html