, Prokhor A. Alekseev
,
Mikhail S. Dunaevskiy
Received 8 January 2016; revised 8 March 2016; accepted 21 June
2016
PAVIRŠIAUS PASYVACIJOS ĮTAKOS
PAVIENIŲ GaAs NANOVAMZDELIŲ ELEKTRINĖMS SAVYBĖMS TYRIMAS
MATUOJANT SROVĖS PRIKLAUSOMYBĘ NUO ĮTAMPOS ATOMINĖS JĖGOS
MIKROSKOPU
References
/
Nuorodos
[1] R.R. LaPierre,
A.C.E. Chia, S.J. Gibson, C.M. Haapamaki, J. Boulanger, R. Yee,
P. Kuyanov, J. Zhang, N. Tajik, N. Jewell, and K.M.A. Rahman,
III–V nanowire photovoltaics: Review of design for high
efficiency, Phys. Status Solidi RRL
7, 815–830 (2013),
http://dx.doi.org/10.1002/pssr.201307109
[2] V.G. Dubrovskii, G.E. Cirlin, and V.M. Ustinov,
Semiconductor nanowhiskers: Synthesis, properties, and
applications, Semiconductors
49, 1539–1584 (2009),
http://dx.doi.org/10.1134/S106378260912001X
[3] X. Miao, K. Chabak, C. Zhang, P.K. Mohseni, D. Walker Jr.,
and X. Li, High-speed planar GaAs nanowire arrays with
fmax
> 75 GHz by wafer-scale bottom-up growth, Nano Lett.
15,
2780–2786 (2015),
http://dx.doi.org/10.1021/nl503596j
[4] X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C.
Couteau, and C. Soci, GaAs/AlGaAs nanowire photodetector, Nano
Lett.
14, 2688–2693 (2014),
http://dx.doi.org/10.1021/nl5006004
[5] J.V. Holm, H.I. Jørgensen, P. Krogstrup, J. Nygård, H. Liu,
and M. Aagesen, Surface-passivated GaAsP single-nanowire solar
cells exceeding 10% efficiency grown on silicon, Nat. Comm.
4,
1498 (2013),
http://dx.doi.org/10.1038/ncomms2510
[6] D.B. Suyatin, V. Jain, V.A. Nebol’sin, J. Trägårdh, M.E.
Messing, J.B. Wagner, O. Persson, R. Timm, A. Mikkelsen, I.
Maximov, L. Samuelson, and H. Pettersson, Strong Schottky
barrier reduction at Au-catalyst/GaAs-nanowire interfaces by
electric dipole formation and Fermi-level unpinning, Nat. Comm.
5, 3221 (2014),
http://dx.doi.org/10.1038/ncomms4221
[7] T. Hanrath and B.A. Korgel, Chemical surface passivation of
Ge nanowires, J. Am. Chem. Soc.
126, 15466–15472 (2004),
http://dx.doi.org/10.1021/ja0465808
[8] J.L. Boland, S. Conesa-Boj, P. Parkinson, G. Tütüncüoglu, F.
Matteini, D. Rüffer, A. Casadei, F. Amaduzzi, F. Jabeen, C.L.
Davies, H.J. Joyce, L.M. Herz, A.F. i Morral, and M.B. Johnston,
Modulation doping of GaAs/AlGaAs core–shell nanowires with
effective defect passivation and high electron mobility, Nano
Lett.
15, 1336–1342 (2015),
http://dx.doi.org/10.1021/nl504566t
[9] L. Hu and G. Chen, Analysis of optical absorption in silicon
nanowire arrays for photovoltaic applications, Nano Lett.
7,
3249–3252 (2007),
http://dx.doi.org/10.1021/nl071018b
[10] J. Kupec, R.L. Stoop, and B. Witzigmann, Light absorption
and emission in nanowire array solar cells, Opt. Express
18,
27589–27605 (2010),
http://dx.doi.org/10.1364/OE.18.027589
[11] P. Geydt, P.A. Alekseev, M.S. Dunaevskiy, T. Haggrén, J.-P.
Kakko, E. Lähderanta, and H. Lipsanen, Observation of linear I–V
curves on vertical GaAs nanowires with atomic force microscope,
J. Phys. Conf. Ser.
661, 012031 (2015),
http://dx.doi.org/10.1088/1742-6596/661/1/012031
[12] E. Koren, N. Berkovitch, O. Azriel, A. Boag, Y. Rosenwaks,
E.R. Hemesath, and L.J. Lauhon, Direct measurement of nanowire
Schottky junction depletion region, Appl. Phys. Lett.
99,
223511 (2011),
http://dx.doi.org/10.1063/1.3665182
[13] C.-H. Hsu, Q. Wang, X. Tao, and Y. Gu, Electrostatics and
electrical transport in semiconductor nanowire Schottky diodes,
Appl. Phys. Lett.
101, 183103 (2012),
http://dx.doi.org/10.1063/1.4765653
[14] Y. Jiao, A. Hellman, Yu. Fang, S. Gao, and M. Käll,
Schottky barrier formation and bending revealed by
first-principles calculations, Sci. Rep.
5, 11374
(2015),
http://dx.doi.org/10.1038/srep11374
[15] A.M. Lord, Th.G. Maffeis, O. Kryvchenkova, R.J. Cobley, K.
Kalna, D.M. Kepaptsoglou, Q.M. Ramasse, A.S. Walton, M.B. Ward,
J. Köble, and S.P. Wilks, Controlling the electrical transport
properties of nanocontacts to nanowires, Nano Lett.
15,
4248–4254 (2015),
http://dx.doi.org/10.1021/nl503743t
[16] P.A. Dementyev, M.S. Dunaevskii, Yu.B. Samsonenko, G.E.
Cirlin, and A.N. Titkov, Current–voltage characteristics of
silicon-doped GaAs nanowhiskers with a protecting AlGaAs coating
overgrown with an undoped GaAs layer, Semiconductors
44,
610–615 (2010),
http://dx.doi.org/10.1134/S1063782610050118
[17] C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J.
Theiss, A.W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M.L.
Povinelli, C. Zhou, P.D. Dapkus, and S.B. Cronin, Electrical and
optical characterization of surface passivation in GaAs
nanowires, Nano Lett.
12, 4484–4489 (2012),
http://dx.doi.org/10.1021/nl301391h
[18] O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A.
Fontcuberta i Morral, Impact of surfaces on the optical
properties of GaAs nanowires, Appl. Phys. Lett.
97,
201907 (2010),
http://dx.doi.org/10.1063/1.3519980
[19] L.V. Titova, T.B. Hoang, H.E. Jackson, L.M. Smith, J.M.
Yarrison-Rice, H.J. Joyce, H.H. Tan, and C. Jagadish,
Temperature dependence of photoluminescence from single
core-shell GaAs–AlGaAs nanowires, Appl. Phys. Lett.
89,
173126 (2006),
http://dx.doi.org/10.1063/1.2364885
[20] A.C. Chia, M. Tirado, Y. Li, S. Zhao, S. Mi, D. Comedi, and
R.R. LaPierre, Electrical transport and optical model of
GaAs-AlInP core-shell nanowires, J. Appl. Phys.
111,
094319 (2012),
http://dx.doi.org/10.1063/1.4716011
[21] A.C. Chia, M. Tirado, F. Thouin, R. Leonelli, D. Comedi,
and R.R. LaPierre, Surface depletion and electrical transport
model of AlInP-passivated GaAs nanowires, Semicond. Sci.
Technol.
28, 105026 (2013),
http://dx.doi.org/10.1088/0268-1242/28/10/105026
[22] T. Haggren, H. Jiang, J.-P. Kakko, T. Huhtio, V. Dhaka, E.
Kauppinen, and H. Lipsanen, Strong surface passivation of GaAs
nanowires with ultrathin InP and GaP capping layers, Appl. Phys.
Lett.
105, 033114 (2014),
http://dx.doi.org/10.1063/1.4891535
[23] A. Darbandi, O. Salehzadeh, P. Kuyanov, R.R. LaPierre, and
S.P. Watkins, Surface passivation of tellurium-doped GaAs
nanowires by GaP: Effect on electrical conduction, J. Appl.
Phys.
115, 234305 (2014),
http://dx.doi.org/10.1063/1.4883960
[24] A. Lin, J.N. Shapiro, P.N. Senanayake, A.C. Scofield, P.-S.
Wong, B. Liang, and D.L. Huffaker, Extracting transport
parameters in GaAs nanopillars grown by selective-area epitaxy,
Nanotechnol.
23, 105701 (2012),
http://dx.doi.org/10.1088/0957-4484/23/10/105701
[25] P.A. Alekseev, M.S. Dunaevskiy, V.P. Ulin, T.V. Lvova, D.O.
Filatov, A.V. Nezhdanov, A.I. Mashin, and V.L. Berkovits,
Nitride surface passivation of GaAs nanowires: impact on surface
state density, Nano Lett.
15, 63–68 (2015),
http://dx.doi.org/10.1021/nl502909k
[26] N. Tajik, Z. Peng, P. Kuyanov, and R.R. LaPierre, Sulfur
passivation and contact methods for GaAs nanowire solar cells,
Nanotechnol.
22, 225402 (2011),
http://dx.doi.org/10.1088/0957-4484/22/22/225402
[27] N. Tajik, A.C.E. Chia, and R.R. LaPierre,
Improvedconductivity and long-term stability of
sulfur-passivated n-GaAs nanowires, Appl. Phys. Lett.
100,
203122 (2012),
http://dx.doi.org/10.1063/1.4719675
[28] L. Chen, W. Lu, and C.M. Lieber, in:
Semiconductor
Nanowires: From Next-Generation Electronics to Sustainable
Energy, eds. W. Lu and J. Xiang (Royal Society of
Chemistry, United Kingdom, 2014) pp. 1–53,
http://dx.doi.org/10.1039/9781782625209-00001
[29] Ch. Gutsche, I. Regolin, K. Blekker, A. Lysov, W. Prost,
and F.J. Tegude, Controllable p-type doping of GaAs nanowires
during vapor–liquid–solid growth, J. Appl. Phys.
105,
024305 (2009),
http://dx.doi.org/10.1063/1.3065536
[30] J.A. Ellis and P.A. Barnes, Current–voltage characteristics
of a GaAs Schottky diode accounting for leakage paths, Appl.
Phys. Lett.
76, 124–125 (2000),
http://dx.doi.org/10.1063/1.125677
[31] A. Fejfar, M. Hývl, M. Ledinský, A. Vetushka, J. Stuchlík,
J. Kočka, S. Misra, B. O’Donnell, M. Foldyna, L. Yu, and P.R.
Cabarrocas, Microscopic measurements of variations in local
(photo)electronic properties in nanostructured solar cells, Sol.
Energ. Mater. Sol. Cells
119, 228–234 (2013),
http://dx.doi.org/10.1016/j.solmat.2013.07.042
[32] A.X. Cartagena-Rivera, W.-H. Wang, R.L. Geahlen, and A.
Raman, Fast, multi-frequency, and quantitative nanomechanical
mapping of live cells using the atomic force microscope, Sci.
Rep.
5, 11692 (2015),
http://dx.doi.org/10.1038/srep11692
[33] B. Torre, M. Bicego, M. Cristiani, V. Murino, A. Diaspro,
and R. Cingolani, Combination of atomic force microscopy and
principal component analysis as a general method for direct
recognition of functional and structural domains in
nanonocomposite materials, Microsc. Res. Tech.
73,
973–981 (2010),
http://dx.doi.org/10.1002/jemt.20837
[34] R. Timm, O. Persson, D.L.J. Engberg, A. Fian, J.L. Webb, J.
Wallentin, A. Jönsson, M.T. Borgström, L. Samuelson, and A.
Mikkelsen, Current–voltage characterization of individual
as-grown nanowires using a scanning tunneling microscope, Nano
Lett.
13, 5182–5189 (2013),
http://dx.doi.org/10.1021/nl402570u
[35] M. D’Acunto and O. Salvetti, Pattern recognition methods
for thermal drift correction in Atomic Force Microscopy imaging,
Pattern Recogn. Image Anal.
21, 9–19 (2011),
http://dx.doi.org/10.1134/S1054661811010056