[PDF]    http://dx.doi.org/10.3952/physics.v56i2.3305

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 92–101 (2016)


INFLUENCE OF SURFACE PASSIVATION ON ELECTRIC PROPERTIES OF INDIVIDUAL GaAs NANOWIRES STUDIED BY CURRENT–VOLTAGE AFM MEASUREMENTS
Pavel Geydta, Prokhor A. Alekseevb, Mikhail S. Dunaevskiyb,c, Tuomas Haggrénd, Joona-Pekko Kakkod, Erkki Lähderantaa, and Harri Lipsanend
aSchool of Engineering Science, Lappeenranta University of Technology, P.O. Box 20, 53851 Lappeenranta, Finland
E-mail: pavel.geydt@gmail.com
bIoffe Physical Technical Institute, Politechnicheskaya 2, 194021 Saint Petersburg, Russia
cNRU ITMO, Kronverkskiy 49, 197101 Saint Petersburg, Russia
dDepartment of Micro- and Nanosciences, Micronova, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland

Received 8 January 2016; revised 8 March 2016; accepted 21 June 2016

Current–voltage (IV) characteristics of vertical p-GaAs nanowires (NWs) covered by different surface passivation materials were experimentally measured by conductive atomic force microscopy (C-AFM). The obtained IV curves for individual NWs with a diameter of 100 nm covered with AlGaAs, GaN, GaP or InP shell layers were compared to analyse the influence of surface passivation on the density of surface states and choose the most beneficial passivating material for technological applications. We have found the absence of a Schottky barrier between the golden catalytic cap on the top of a NW and the nanowire situated below and covered with an ultrathin GaP passivating layer. It was suggested that passivating material can arrange the heterostructure  configuration with the GaAs NW near the Au cap. The latter mechanism was proposed to explain a strong energy barrier found in nanowires covered with InP passivation. AlGaAs passivation affected the forward threshold voltage of nanowires for NWs, which was measured simultaneously with the resistivity of each individual vertical structure from an array by means of AFM in the regime of measuring the IV curves and onefold calculations. We made an attempt to develop the methodology of measurement and characterization of electric properties of passivated NWs.
Keywords: nanowires, passivation, GaAs, AFM, current–voltage characteristics
PACS: 73.43.Fj, 81.05.Ea, 81.07.Gf

PAVIRŠIAUS PASYVACIJOS ĮTAKOS PAVIENIŲ GaAs NANOVAMZDELIŲ ELEKTRINĖMS SAVYBĖMS TYRIMAS MATUOJANT SROVĖS PRIKLAUSOMYBĘ NUO ĮTAMPOS ATOMINĖS JĖGOS MIKROSKOPU

Pavel Geydta, Prokhor A. Alekseevb, Mikhail A. Dunaevskiyb,c, Tuomas Haggrénd, Joona-Pekko Kakkod, Erkki Lähderantaa, Harri Lipsanend
aLapenrantos technologijos universitetas, Lapenranta, Suomija
bJofės fizikos technikos institutas, Sankt Peterburgas, Rusija
cValstybinis informacinių technologijų, mechanikos ir optikos universitetas, Sankt Peterburgas, Rusija
dAlto universitetas, Suomija


References / Nuorodos

[1] R.R. LaPierre, A.C.E. Chia, S.J. Gibson, C.M. Haapamaki, J. Boulanger, R. Yee, P. Kuyanov, J. Zhang, N. Tajik, N. Jewell, and K.M.A. Rahman, III–V nanowire photovoltaics: Review of design for high efficiency, Phys. Status Solidi RRL 7, 815–830 (2013),
http://dx.doi.org/10.1002/pssr.201307109
[2] V.G. Dubrovskii, G.E. Cirlin, and V.M. Ustinov, Semiconductor nanowhiskers: Synthesis, properties, and applications, Semiconductors 49, 1539–1584 (2009),
http://dx.doi.org/10.1134/S106378260912001X
[3] X. Miao, K. Chabak, C. Zhang, P.K. Mohseni, D. Walker Jr., and X. Li, High-speed planar GaAs nanowire arrays with fmax > 75 GHz by wafer-scale bottom-up growth, Nano Lett. 15, 2780–2786 (2015),
http://dx.doi.org/10.1021/nl503596j
[4] X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, GaAs/AlGaAs nanowire photodetector, Nano Lett. 14, 2688–2693 (2014),
http://dx.doi.org/10.1021/nl5006004
[5] J.V. Holm, H.I. Jørgensen, P. Krogstrup, J. Nygård, H. Liu, and M. Aagesen, Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon, Nat. Comm. 4, 1498 (2013),
http://dx.doi.org/10.1038/ncomms2510
[6] D.B. Suyatin, V. Jain, V.A. Nebol’sin, J. Trägårdh, M.E. Messing, J.B. Wagner, O. Persson, R. Timm, A. Mikkelsen, I. Maximov, L. Samuelson, and H. Pettersson, Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning, Nat. Comm. 5, 3221 (2014),
http://dx.doi.org/10.1038/ncomms4221
[7] T. Hanrath and B.A. Korgel, Chemical surface passivation of Ge nanowires, J. Am. Chem. Soc. 126, 15466–15472 (2004),
http://dx.doi.org/10.1021/ja0465808
[8] J.L. Boland, S. Conesa-Boj, P. Parkinson, G. Tütüncüoglu, F. Matteini, D. Rüffer, A. Casadei, F. Amaduzzi, F. Jabeen, C.L. Davies, H.J. Joyce, L.M. Herz, A.F. i Morral, and M.B. Johnston, Modulation doping of GaAs/AlGaAs core–shell nanowires with effective defect passivation and high electron mobility, Nano Lett. 15, 1336–1342 (2015),
http://dx.doi.org/10.1021/nl504566t
[9] L. Hu and G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications, Nano Lett. 7, 3249–3252 (2007),
http://dx.doi.org/10.1021/nl071018b
[10] J. Kupec, R.L. Stoop, and B. Witzigmann, Light absorption and emission in nanowire array solar cells, Opt. Express 18, 27589–27605 (2010),
http://dx.doi.org/10.1364/OE.18.027589
[11] P. Geydt, P.A. Alekseev, M.S. Dunaevskiy, T. Haggrén, J.-P. Kakko, E. Lähderanta, and H. Lipsanen, Observation of linear I–V curves on vertical GaAs nanowires with atomic force microscope, J. Phys. Conf. Ser. 661, 012031 (2015),
http://dx.doi.org/10.1088/1742-6596/661/1/012031
[12] E. Koren, N. Berkovitch, O. Azriel, A. Boag, Y. Rosenwaks, E.R. Hemesath, and L.J. Lauhon, Direct measurement of nanowire Schottky junction depletion region, Appl. Phys. Lett. 99, 223511 (2011),
http://dx.doi.org/10.1063/1.3665182
[13] C.-H. Hsu, Q. Wang, X. Tao, and Y. Gu, Electrostatics and electrical transport in semiconductor nanowire Schottky diodes, Appl. Phys. Lett. 101, 183103 (2012),
http://dx.doi.org/10.1063/1.4765653
[14] Y. Jiao, A. Hellman, Yu. Fang, S. Gao, and M. Käll, Schottky barrier formation and bending revealed by first-principles calculations, Sci. Rep. 5, 11374 (2015),
http://dx.doi.org/10.1038/srep11374
[15] A.M. Lord, Th.G. Maffeis, O. Kryvchenkova, R.J. Cobley, K. Kalna, D.M. Kepaptsoglou, Q.M. Ramasse, A.S. Walton, M.B. Ward, J. Köble, and S.P. Wilks, Controlling the electrical transport properties of nanocontacts to nanowires, Nano Lett. 15, 4248–4254 (2015),
http://dx.doi.org/10.1021/nl503743t
[16] P.A. Dementyev, M.S. Dunaevskii, Yu.B. Samsonenko, G.E. Cirlin, and A.N. Titkov, Current–voltage characteristics of silicon-doped GaAs nanowhiskers with a protecting AlGaAs coating overgrown with an undoped GaAs layer, Semiconductors 44, 610–615 (2010),
http://dx.doi.org/10.1134/S1063782610050118
[17] C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A.W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M.L. Povinelli, C. Zhou, P.D. Dapkus, and S.B. Cronin, Electrical and optical characterization of surface passivation in GaAs nanowires, Nano Lett. 12, 4484–4489 (2012),
http://dx.doi.org/10.1021/nl301391h
[18] O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. Fontcuberta i Morral, Impact of surfaces on the optical properties of GaAs nanowires, Appl. Phys. Lett. 97, 201907 (2010),
http://dx.doi.org/10.1063/1.3519980
[19] L.V. Titova, T.B. Hoang, H.E. Jackson, L.M. Smith, J.M. Yarrison-Rice, H.J. Joyce, H.H. Tan, and C. Jagadish, Temperature dependence of photoluminescence from single core-shell GaAs–AlGaAs nanowires, Appl. Phys. Lett. 89, 173126 (2006),
http://dx.doi.org/10.1063/1.2364885
[20] A.C. Chia, M. Tirado, Y. Li, S. Zhao, S. Mi, D. Comedi, and R.R. LaPierre, Electrical transport and optical model of GaAs-AlInP core-shell nanowires, J. Appl. Phys. 111, 094319 (2012),
http://dx.doi.org/10.1063/1.4716011
[21] A.C. Chia, M. Tirado, F. Thouin, R. Leonelli, D. Comedi, and R.R. LaPierre, Surface depletion and electrical transport model of AlInP-passivated GaAs nanowires, Semicond. Sci. Technol. 28, 105026 (2013),
http://dx.doi.org/10.1088/0268-1242/28/10/105026
[22] T. Haggren, H. Jiang, J.-P. Kakko, T. Huhtio, V. Dhaka, E. Kauppinen, and H. Lipsanen, Strong surface passivation of GaAs nanowires with ultrathin InP and GaP capping layers, Appl. Phys. Lett. 105, 033114 (2014),
http://dx.doi.org/10.1063/1.4891535
[23] A. Darbandi, O. Salehzadeh, P. Kuyanov, R.R. LaPierre, and S.P. Watkins, Surface passivation of tellurium-doped GaAs nanowires by GaP: Effect on electrical conduction, J. Appl. Phys. 115, 234305 (2014),
http://dx.doi.org/10.1063/1.4883960
[24] A. Lin, J.N. Shapiro, P.N. Senanayake, A.C. Scofield, P.-S. Wong, B. Liang, and D.L. Huffaker, Extracting transport parameters in GaAs nanopillars grown by selective-area epitaxy, Nanotechnol. 23, 105701 (2012),
http://dx.doi.org/10.1088/0957-4484/23/10/105701
[25] P.A. Alekseev, M.S. Dunaevskiy, V.P. Ulin, T.V. Lvova, D.O. Filatov, A.V. Nezhdanov, A.I. Mashin, and V.L. Berkovits, Nitride surface passivation of GaAs nanowires: impact on surface state density, Nano Lett. 15, 63–68 (2015),
http://dx.doi.org/10.1021/nl502909k
[26] N. Tajik, Z. Peng, P. Kuyanov, and R.R. LaPierre, Sulfur passivation and contact methods for GaAs nanowire solar cells, Nanotechnol. 22, 225402 (2011),
http://dx.doi.org/10.1088/0957-4484/22/22/225402
[27] N. Tajik, A.C.E. Chia, and R.R. LaPierre, Improvedconductivity and long-term stability of sulfur-passivated n-GaAs nanowires, Appl. Phys. Lett. 100, 203122 (2012),
http://dx.doi.org/10.1063/1.4719675
[28] L. Chen, W. Lu, and C.M. Lieber, in: Semiconductor Nanowires: From Next-Generation Electronics to Sustainable Energy, eds. W. Lu and J. Xiang (Royal Society of Chemistry, United Kingdom, 2014) pp. 1–53,
http://dx.doi.org/10.1039/9781782625209-00001
[29] Ch. Gutsche, I. Regolin, K. Blekker, A. Lysov, W. Prost, and F.J. Tegude, Controllable p-type doping of GaAs nanowires during vapor–liquid–solid growth, J. Appl. Phys. 105, 024305 (2009),
http://dx.doi.org/10.1063/1.3065536
[30] J.A. Ellis and P.A. Barnes, Current–voltage characteristics of a GaAs Schottky diode accounting for leakage paths, Appl. Phys. Lett. 76, 124–125 (2000),
http://dx.doi.org/10.1063/1.125677
[31] A. Fejfar, M. Hývl, M. Ledinský, A. Vetushka, J. Stuchlík, J. Kočka, S. Misra, B. O’Donnell, M. Foldyna, L. Yu, and P.R. Cabarrocas, Microscopic measurements of variations in local (photo)electronic properties in nanostructured solar cells, Sol. Energ. Mater. Sol. Cells 119, 228–234 (2013),
http://dx.doi.org/10.1016/j.solmat.2013.07.042
[32] A.X. Cartagena-Rivera, W.-H. Wang, R.L. Geahlen, and A. Raman, Fast, multi-frequency, and quantitative nanomechanical mapping of live cells using the atomic force microscope, Sci. Rep. 5, 11692 (2015),
http://dx.doi.org/10.1038/srep11692
[33] B. Torre, M. Bicego, M. Cristiani, V. Murino, A. Diaspro, and R. Cingolani, Combination of atomic force microscopy and principal component analysis as a general method for direct recognition of functional and structural domains in nanonocomposite materials, Microsc. Res. Tech. 73, 973–981 (2010),
http://dx.doi.org/10.1002/jemt.20837
[34] R. Timm, O. Persson, D.L.J. Engberg, A. Fian, J.L. Webb, J. Wallentin, A. Jönsson, M.T. Borgström, L. Samuelson, and A. Mikkelsen, Current–voltage characterization of individual as-grown nanowires using a scanning tunneling microscope, Nano Lett. 13, 5182–5189 (2013),
http://dx.doi.org/10.1021/nl402570u
[35] M. D’Acunto and O. Salvetti, Pattern recognition methods for thermal drift correction in Atomic Force Microscopy imaging, Pattern Recogn. Image Anal. 21, 9–19 (2011),
http://dx.doi.org/10.1134/S1054661811010056