Juozas Vidmantis Vaitkus, Algirdas Mekys, Vytautas Rumbauskas, and
Jurgis Storasta
Received 19 December 2015; revised 27 April 2016; accepted 21 June
2016
APŠVITOS NEUTRONAIS ĮTAKA
ELEKTRONŲ JUDRIUI IR TAMSINIO LAIDUMO KOMPENSACIJAI SILICIO
KRISTALUOSE
apšvitintuose reaktoriaus neutronais,
panaudojant Holo efekto ir magnetovaržos metodikas. Analizuotos
elektronų judrio ir krūvininkų koncentracijos prieklausos nuo
neutronų įtėkio ir temperatūros. Parodyta, kad elektronų judris
mažėja didinant neutronų įtėkį plačiame įtėkių intervale, ir
bandiniuose sukuriami mikronevienalytiškumai, lemiantys
elektronų judrio, nustatomo iš Holo efekto ir magnetovaržos,
skirtumus. Panaudojant magnetovaržinio judrio vertes nustatyta
elektronų koncentracijos prieklausa nuo temperatūros, o ją
analizuojant gautos lokalinių lygmenų aktyvacijos energijos ir
jų koncentracijos. Gauta, kad apšvita neutronais sukuria
lygmenis viršutinėje draustinės juostos pusėje, tačiau jų įtaka
tamsiniam kristalų elektriniam laidumui didėjant neutronų
įtėkiui mažėja, nes sukuriama didesnė akceptorių koncentracija
draustinės juostos viduryje ar jos apatinėje dalyje. Nustatyta,
kad laisvųjų krūvininkų koncentracijos aktyvacijos energija
netenkina vienalyčio puslaidininkio modelio, todėl sukurtas
modifikuotas defektų klasterio modelis ir paaiškinta
puslaidininkio tamsinio laidumo prigimtis, nusakanti klasterio
ir jo apsupties savybes.
References
/
Nuorodos
[1] K. Wehe, Current
trends in ionizing radiation detectors, Nucl. Eng. Technol.
38,
311–318 (2006),
http://www.kns.org/jknsfile/v38/JK0383111.pdf
[2] M. Moll, J. Adey, A. Al-Ajili, G. Alfieri, P.P. Allport, M.
Artuso, S. Assouak, B.S. Avset, L. Barabash, A. Barcz, et al.,
Development of radiation tolerant semiconductor detectors for
Super-LHC, Nucl. Instrum. Methods A
546, 99–107 (2005),
http://dx.doi.org/10.1016/j.nima.2005.03.044
[3] M. Moll, E. Fretwurst, and G. Lindström, Investigation on
the improved radiation hardness of silicon detectors with high
oxygen concentration, Nucl. Instrum. Methods A
439,
282–292 (2000),
http://dx.doi.org/10.1016/S0168-9002(99)00842-6
[4] M. Huhtinen, Simulation of non-ionising energy loss and
defect formation in silicon, Nucl. Instrum. Methods A
491,
194–215 (2002),
http://dx.doi.org/10.1016/S0168-9002(02)01227-5
[5] T.J. Brodbeck, A. Chilingarov, T. Sloan, E. Fretwurst, M.
Kuhnke, and G. Lindstroem, Carrier mobilities in irradiated
silicon, Nucl. Instrum. Methods A
477, 287–292 (2002),
http://dx.doi.org/10.1016/S0168-9002(01)01858-7
[6] E. Borchi, M. Bruzzi, B. Dezillie, S. Lazanu, Z. Li, and S.
Pirollo, Hall effect analysis in irradiated silicon samples with
different resistivities, IEEE Trans. Nucl. Sci.
46,
834–838 (1999),
http://dx.doi.org/10.1109/23.790687
[7] V. Eremin and Z. Li, Carrier drift mobility study in neutron
irradiated high purity silicon, Nucl. Instrum. Methods A
362,
338 (1995),
http://dx.doi.org/
10.1016/0168-9002(95)00381-9
[8] R.H. Bube, Interpretation of Hall and photo-Hall effects in
inhomogeneous materials, Appl. Phys. Lett.
13, 136–139
(1968),
http://dx.doi.org/10.1063/1.1652542
[9] W. Siegel, S. Schulte, C. Reichel, G. Kuhnel, and J.
Monecke, Anomalous temperature dependence of the Hall mobility
in undoped bulk GaAs, J. Appl. Phys.
82, 3832–3835
(1997),
http://dx.doi.org/10.1063/1.365747
[10] V.G. Karpov, A.J. Shik, and B.I. Shklovskii, Theory of the
Hall effect in randomly inhomogeneous semiconductors, Sov. Phys.
Semiconduct.
16, 901–903 (1982)
[11] J. Vaitkus, A. Mekys, G. Mockevičius, J. Storasta, and N.
Vainorius, in:
Materials of 4th International Conference on
Radiation Interaction with Material and Its Use in
Technologies 2012 (Technologija, Kaunas, 2012) pp. 33–38
[12] D.K. Schroder,
Semiconductor Material and Device
Characterization (Wiley, N. Y., 1990),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471739065.html
[13] P. Norton, T. Braggins, and H. Levinstein, Impurity and
lattice scattering parameters as determined from Hall and
mobility analysis in n-type silicon, Phys. Rev. B
8,
5632–5653 (1973),
http://dx.doi.org/10.1103/PhysRevB.8.5632
[14] A.C. Beer,
Galvanomagnetic Effects in Semiconductors
(Academic Press, N. Y., 1963),
https://www.amazon.co.uk/Galvanomagnetic-effects-semiconductors-physics-Supplements/dp/B0000CM61T/
[15] A. Mekys, V. Rumbauskas, J. Storasta, L. Makarenko, and
J.V. Vaitkus, Defect analysis in fast electron irradiated
silicon by Hall and magnetoresistivity means, Nucl. Instrum.
Methods B
338, 95–100 (2014),
http://dx.doi.org/10.1016/j.nimb.2014.08.007
[16] A. Mekys, V. Rumbauskas, J. Storasta, L. Makarenko, N.
Kazuchits, and J.V. Vaitkus, Hall effect and magnetoresistance
investigation of fast electron irradiated silicon, Lith. J.
Phys.
54, 94–98 (2014),
http://dx.doi.org/10.3952/lithjphys.54204
[17] C. Jacoboni and P. Lugli,
The Monte Carlo Method for
Semiconductor Device Simulation (Springer Science &
Business Media, 2012),
http://dx.doi.org/10.1007/978-3-7091-6963-6
[18] K.W. Böer,
Handbook of the Physics of Thin-Film Solar
Cells (Springer Science & Business Media, Berlin,
2014),
http://dx.doi.org/10.1007/978-3-642-36748-9
[19] B.K. Ridley, Reconciliation of the Conwell–Weisskopf and
Brooks–Herring formulae for charged-impurity scattering in
semiconductors: Third-body interference, J. Phys. C
10(10),
1589–1593 (1977),
http://dx.doi.org/10.1088/0022-3719/10/10/003
[20] E. Verbitskaya, V. Eremin, Z. Li, J. Harkonen, and M.
Bruzzi, Concept of Double Peak electric field distribution in
the development of radiation hard silicon detectors, Nucl.
Instrum. Methods A
583, 77–86 (2007),
http://dx.doi.org/10.1016/j.nima.2007.08.228
[21] H.J. Stein., Electrical studies of neutron-irradiated
n-type Si: defect structure and annealing, Phys. Rev.
163(3),
801–808 (1967),
http://dx.doi.org/10.1103/PhysRev.163.801
[22] H.J. Juretschke, R. Landauer, and J.A. Swanson, Hall effect
and conductivity in porous media, J. Appl. Phys.
27, 838
(1956),
http://dx.doi.org/10.1063/1.1722496
[23] W. Siegel, S. Schulte, G. Kühnel, and J. Monecke, Hall
mobility lowering in undoped
n-type bulk GaAs due to
cellular-structure related nonuniformities, J. Appl. Phys.
81,
3155–9 (1997),
http://dx.doi.org/10.1063/1.364350
[24] L.R. Weisberg, Anomalous mobility effects in some
semiconductors and insulators, J. Appl. Phys.
5,
1817–1821 (1962),
http://dx.doi.org/10.1063/1.1728839
[25] C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi
Quaranta, A review of some charge transport properties of
silicon, Solid State Electron.
20(2), 77–89 (1977),
http://dx.doi.org/10.1016/0038-1101(77)90054-5
[26] K. Seeger,
Semiconductor Physics (Springer-Verlag,
Wien, New York, 1973),
http://dx.doi.org/10.1007/978-3-7091-4111-3
[27] W. Zhao and D. Jena, Dipole scattering in highly polar
semiconductor alloys, J. Appl. Phys.
96, 2095–2101
(2004),
http://dx.doi.org/10.1063/1.1767615
[28] S.M. Sze,
Physics of Semiconductor Devices (Wiley,
New York, 1981),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471673242.html
[29] J.S. Blakemore,
Semiconductor Statistics (Pergamon
Press, Oxford, 1962),
https://www.amazon.co.uk/Semiconductor-Statistics-International-Monographs-Semiconductors/dp/1483116522/
[30] B.J. Svensson, M.J. Rayson, P.R. Briddon, J. Coutinho, V.P.
Markevich, A.R. Peaker, B. Hamilton, S.B. Lastovskii, and L.I.
Murin, Electronic and dynamical properties of the silicon
trivacancy, Phys. Rev. B
86, 174101 (2012),
http://dx.doi.org/10.1103/PhysRevB.86.174101
[31] G. Lindström, M. Moll, and E. Fretwurst, Radiation hardness
of silicon detectors – a challenge from high-energy physics,
Nucl. Instrum. Methods A
426, 1–15 (1999),
http://dx.doi.org/10.1016/S0168-9002(98)01462-4
[32] V. Kalendra, E. Gaubas, V. Kazukauskas, E. Zasinas, and J.
Vaitkus, Photoconductivity spectra and deep levels in the
irradiated p
+–n–n
+ Si detectors, Nucl.
Instrum. Methods A
612, 555–558 (2010),
http://dx.doi.org/10.1016/j.nima.2009.08.043
[33] P.F. Ermolov, D.E. Karmanov, A.K. Leflat, V.M. Manankov,
M.M. Merkin, and E.K. Shabalina, Neutron irradiation-induced
effects caused by divacancy clusters with a tetravacancy core in
float-zone silicon, Semiconductors
36, 1114–1122 (2002),
http://dx.doi.org/10.1134/1.1513854
[34] R.M. Fleming, C.H. Seager, D.V. Lang, P.J. Cooper, E.
Bielejec, and J.M. Campbell, Effects of clustering on the
properties of defects in neutron irradiated silicon, J. Appl.
Phys.
102, 043711 (2007),
http://dx.doi.org/10.1063/1.2769783
[35] P.C. Serce, Multiphonon-assisted tunneling through deep
levels: A rapid energy-relaxation mechanism in nonideal
quantum-dot heterostructures, Phys. Rev. B
51,
14532–14541 (1995),
http://dx.doi.org/10.1103/PhysRevB.51.14532