Benedikta Lukšienė, Zita Žukauskaitė, Nikolaj Tarasiuk, Evaldas
Maceika, Vitold Filistovič, Šarūnas Buivydas, Laima Nedzveckienė,
and Dalia Jasinevičienė
Received 21 May 2015; revised 5 March 2016; accepted 21 June 2016
References
/
Nuorodos
[1] D. Marčiulionienė,
D. Kiponas, and D. Hansen, Accumulation of technogenic
radionuclides in the environment of Ignalina NPP, Ekologija
1,
52–59 (2001) [in Lithuanian],
https://inis.iaea.org/search/search.aspx?orig_q=RN:33048689
[2] J. Mažeika,
Radionuclides in Geoenvironment of Lithuania
(Institute of Geology, Vilnius, 2002)
[3] V. Mironov, V. Kudrjashov, F. Yiou, and G.M. Raisbeck, Use
of
129I and
137Cs in soils for the
estimation of 131I deposition in Belarus as a result of the
Chernobyl accident, J. Environ. Radioact.
59, 293–307
(2002),
http://dx.doi.org/10.1016/S0265-931X(01)00080-7
[4] V. Remeikis, R. Gvozdaitė, R. Druteikienė, A. Plukis, N.
Tarasiuk, and N. Špirkauskaitė, Plutonium and americium in
sediments of Lithuanian lakes, Nukleonika
50(2), 61–66
(2005),
http://www.ichtj.waw.pl/nukleonikaa/?p=719
[5] D. Butkus and M. Konstantinova, Studies of long-term
vertical migration of
137Cs in soil, Environ. Chem.
Phys.
25, 75–80 (2003)
[6] P. Carbol, D. Solatie, N. Erdmann, T. Nylèn, and M. Betti,
Deposition and distribution of Chernobyl fallout fission
products and actinides in a Russian soil profile, J. Environ.
Radioact.
68(1), 27–46 (2003),
http://dx.doi.org/10.1016/S0265-931X(03)00027-4
[7] B. Lukšienė, R. Druteikienė, R. Gvozdaitė, and A. Gudelis,
Comparative analysis of Pu-239, Cs-137, Pb-210 and K-40 spatial
distributions in the top soil layer at the Baltic coast, J.
Environ. Radioact.
87(3), 305–314 (2006),
http://dx.doi.org/10.1016/j.jenvrad.2005.12.005
[8] R. Druteikienė, R. Morkūnienė, and B. Lukšienė, Distribution
of artificial radionuclides in the Baltic seaside environment,
Lith. J. Phys.
51(1), 75–81 (2011),
http://dx.doi.org/10.3952/lithjphys.51107
[9] B. Lukšienė, E. Maceika, N. Tarasiuk, E. Koviazina, V.
Filistovič, Š. Buivydas, and A. Puzas, On peculiarities of
vertical distribution of
239,240Pu,
238Pu
and
137Cs activity concentrations and their ratios
in lake sediments and soils, J. Radioanal. Nucl. Chem.
300,
277–286 (2014),
http://dx.doi.org/10.1007/s10967-014-3026-0
[10] L. Popov, G. Mihailova, and I. Naidenov, Determination of
activity ratios of
238,239+240,241Pu,
241Am,
134,137Cs, and
90Sr in Bulgarian soils,
J. Radioanal. Nucl. Chem.
285, 223–237 (2010),
http://dx.doi.org/10.1007/s10967-010-0550-4
[11] P.P. Povinec, I. Sýkora, K. Holý, M. Gera, A. Kováčik, and
L. Brest’áková, Aerosol radioactivity record in
Bratislava/Slovakia following the Fukushima accident – A
comparison with global fallout and the Chernobyl accident, J.
Environ. Radioact.
114, 81–88 (2012),
http://dx.doi.org/10.1016/j.jenvrad.2012.05.008
[12] B. Lukšienė, A. Puzas, V. Remeikis, R. Druteikienė, A.
Gudelis, R. Gvozdaitė, Š. Buivydas, R. Davidonis, and G.
Kandrotas, Spatial patterns and ratios of
137Cs,
90Sr,
and Pu isotopes in the top layer of undisturbed meadow soils as
indicators for contamination origin, Environ. Monit. Assess.
187,
268 (2015),
http://dx.doi.org/10.1007/s10661-015-4491-9
[13] UNSCEAR,
Ionizing Radiation: Sources and Biological
Effects. Report to the General Assembly, with annexes
(UNSCEAR, New York, NY, 1982),
http://www.unscear.org/unscear/en/publications/1982.html
[14] S. Babel and T.A. Kurniawan, Low-cost adsorbents for heavy
metals uptake from contaminated water: a review, J. Hazard.
Mater.
97(1–3), 219–243 (2003),
http://dx.doi.org/10.1016/S0304-3894(02)00263-7
[15] F.E. Soetaredjo, A. Kurniawan, L.K. Ong, D.R. Widagdyo, and
S. Ismadji, Investigation of the continuous flow sorption of
heavy metals in a biomass-packed column: revisiting the Thomas
design model for correlation of binary component systems, RSC
Adv.
4, 52856–52870 (2014),
http://dx.doi.org/10.1039/C4RA06425A
[16] M.A. Barakat, New trends in removing heavy metals from
industrial wastewater, Arabian J. Chem.
4(4), 361–377
(2011),
http://dx.doi.org/10.1016/j.arabjc.2010.07.019
[17] J. Wang and C. Chen, Biosorbents for heavy metals removal
and their future, J. Biotech. Adv. 27(2), 195–226 (2009),
http://dx.doi.org/10.1016/j.biotechadv.2008.11.002
[18] M. Sravani, M. Manasa, V. Sridevi, and M.V.V. Chandana
Lakshmi, A competitive effect of Cu (II) and Pb (II) on
biosorption by
Aspergillus Niger NCIM (616) using ICPMS,
Res. J. Pharm. Biol. Chem. Sci.
3(4), 1408–1416 (2012),
http://www.rjpbcs.com/pdf/2012_3(4)/[157].pdf
[19] B. Volesky and Z.R. Holan, Biosorption of heavy metals,
Biotechnol. Progr.
11(3), 235–250 (1995),
http://dx.doi.org/10.1021/bp00033a001
[20] D. Park, Y.S. Yun, and J.M. Park, The past, present, and
future trends of biosorption, Biotech. Bioprocess Eng.
15(1),
86–102 (2010),
http://dx.doi.org/10.1007/s12257-009-0199-4
[21] G. Crini and P.M. Badot, Application of chitosan, a natural
aminopolysaccharide, for dye removal by aqueous solutions by
adsorption processes using batch studies: a review of recent
literature, Prog. Polym. Sci.
33, 399–447 (2008),
http://dx.doi.org/10.1016/j.progpolymsci.2007.11.001
[22] M. Eriksson, E. Holm, P. Roos, and H. Dahlgaard,
Distribution and flux of
238Pu,
239,240Pu,
241Am,
137Cs and
210Pb to
high arctic lakes in the Thule district (Greenland), J. Environ.
Radioact.
75(3), 285–299 (2004),
http://dx.doi.org/10.1016/j.jenvrad.2003.12.007
[23] M. Lusa, J. Lehto, A. Leskinen, and T. Jaakkola,
137Cs,
239,240Pu and
241Am in bottom sediments
and surface water of Lake Päijänne, Finland, J. Environ.
Radioact.
100(4), 468–476 (2009),
http://dx.doi.org/10.1016/j.jenvrad.2009.03.006
[24] A. Moisejenkova, N. Tarasiuk, E. Koviazina, E. Maceika, and
A. Girgždys,
137Cs in lake Tapeliai, Lithuania,
Lith. J. Phys.
52(3), 238–252 (2012),
http://dx.doi.org/10.3952/lithjphys.52308
[25] N. Tarasiuk, E. Koviazina, and V. Kubarevičienė, On
seasonal variations of radiocesium speciation in the surface
sediments of Lake Juodis, Lithuania, J. Environ. Radioact.
99(1),
199–210 (2008),
http://dx.doi.org/10.1016/j.jenvrad.2007.10.014
[26] V. Putyrskaya, E. Klemt, and S. Röllin, Migration of
137Cs
in tributaries, lake water and sediment of Lago Maggiore (Italy,
Switzerland) – analysis and comparison with Lago di Lugano and
other lakes, J. Environ. Radioact.
100(1), 35–48 (2009),
http://dx.doi.org/10.1016/j.jenvrad.2008.10.005
[27] P. Kalač, A review of chemical composition and nutritional
value of wild-growing and cultivated mushrooms, J. Sci. Food
Agric.
93(2), 209–218 (2013),
http://dx.doi.org/10.1002/jsfa.5960
[28] M. Rinaudo, Chitin and chitosan: Properties and
applications, Prog. Polym. Sci.
31, 603–632 (2006),
http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001
[29] V.N. Kosyakov, N.G. Yakovlev, and I.E. Veleshko,
Application of chitin-containing fiber material “mycoton” for
actinide adsorption, J. Nucl. Sci. Technol.
39(3),
508–511 (2002),
http://dx.doi.org/10.1080/00223131.2002.10875518
[30] M. Riazi, A.R. Keshtkar, and M.A. Moosavian, Batch and
continuous fixed-bed column biosorption of thorium (IV) from
aqueous solutions: equilibrium and dynamic modeling, J.
Radioanal. Nucl. Chem.
301(2), 493–503 (2014),
http://dx.doi.org/10.1007/s10967-014-3129-7
[31] A.F. Seliman, Y.F. Lasheen, M.A.E. Youssief, M.M. Abo-Aly,
and F.A. Shehata, Removal of some radionuclides from
contaminated solution using natural clay: bentonite, J.
Radioanal. Nucl. Chem.
300(3), 969–979 (2014),
http://dx.doi.org/10.1007/s10967-014-3027-z
[32] A. Lerman, D.M. Imboden, and J.R. Gat,
Physics and
Chemistry of Lakes, 2nd ed. (Springer-Verlag, Berlin,
Heidelberg, 1995) p. 333,
http://dx.doi.org/10.1007/978-3-642-85132-2
[33] G.N. Pshinko, L.N. Puzyrnaya, S.A. Kobets, V.M. Fedorova,
A.A. Kosorukov, and V.Ya. Demchenko, Layered double hydroxide of
Zn and Al, intercalated with hexacyanoferrate(II) ions, as a
sorbent for removing cesium radionuclides from aqueous
solutions, Radiochem.
57(3), 259–265 (2015),
http://dx.doi.org/10.1134/S1066362215030066
[34] K.M. Krupka, D.I. Kaplan, G. Whelan, R.J. Serne, and S.V.
Mattigod,
Understanding Variation in Partition Coefficient,
Kd, Values. Vol. II: Review of Geochemistry and Available Kd
Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon,
Strontium, Thorium, Tritium (3H) and Uranium, EPA
402-R-99-0048 (Office of Air and Radiation, Office of Solid
Waste and Emergency Response, U.S. Environmental Protection
Agency, Washington, D.C., 1999),
http://www.epa.gov/radiation/technology/partition.htm
[35] Š. Palágyi and H. Vodičková, Sorption and desorption of
125I
–,
137Cs
+,
85Sr
2+ and
152,154Eu
3+ on disturbed soils under
dynamic flow and static batch conditions, J. Radioanal. Nucl.
Chem.
280(1), 3–14 (2009),
http://dx.doi.org/10.1007/s10967-008-7436-8
[36] D. Li, D.I. Kaplan, A.S. Knox, K.P. Crapse, and D.P.
Diprete, Aqueous
99Tc,
129I and
137Cs
removal from contaminated groundwater and sediments using highly
effective low-cost sorbents, J. Environ. Radioact.
136,
56–63 (2014),
http://dx.doi.org/10.1016/j.jenvrad.2014.05.010
[37] G. Lujanienė, S. Motiejūnas, and J. Šapolaitė, Sorption of
Cs, Pu and Am on clay minerals, J. Radioanal. Nucl. Chem.
274(2),
345–353 (2007),
http://dx.doi.org/10.1007/s10967-007-1121-1