Dmitri V. Khveshchenko
References
/
Nuorodos
[1] J. Polchinski,
Introduction to gauge/gravity duality,
http://arxiv.org/abs/1010.6134
[2] J. McGreevy, Holographic duality with a view toward
many-body physics, Adv. High Energy Phys.
2010, 723105
(2010),
http://dx.doi.org/10.1155/2010/723105
[3] S.A. Hartnoll, Lectures on holographic methods for condensed
matter physics, Classical Quant. Grav.
26, 224002
(2009),
http://dx.doi.org/10.1088/0264-9381/26/22/224002
[4] C.P. Herzog, Lectures on holographic superfluidity and
superconductivity, J. Phys. A
42 343001 (2009),
http://dx.doi.org/10.1088/1751-8113/42/34/343001
[5] S. Sachdev, What can gauge-gravity duality teach us about
condensed matter physics?, Annu. Rev. Cond. Matt. Phys.
3,
9 (2012),
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125141
[6] S. de Haro, D.R. Mayerson, and J. Butterfield, Conceptual
aspects of gauge/gravity duality,
http://arxiv.org/abs/1509.09231
[7] M. Ammon and J. Erdmenger,
Gauge/Gravity Duality:
Foundations and Applications (Cambridge University Press,
2015),
http://dx.doi.org/10.1017/CBO9780511846373
[8] J. Zaanen, Yan Liu, Ya-Wen Sun, and K. Schalm,
Holographic
Duality in Condensed Matter Physics (Cambridge University
Press, 2015),
http://dx.doi.org/10.1017/CBO9781139942492
[9] S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers, and R.M.
Thomson, Holographic phase transitions at finite baryon density,
J. High Energy Phys.
2007(02), 016 (2007),
http://arxiv.org/abs/hep-th/0611099,
http://dx.doi.org/10.1088/1126-6708/2007/02/016
[10] A. Karch and A. O'Bannon, Metallic AdS/CFT, J. High Energy
Phys.
2007(09), 024 (2007),
http://arxiv.org/abs/0705.3870,
http://dx.doi.org/10.1088/1126-6708/2007/09/024
[11] S. Kachru, A. Karch, and S. Yaida, Holographic lattices,
dimers and glasses, Phys. Rev. D
81, 026007 (2010),
http://arxiv.org/abs/0909.2639,
http://dx.doi.org/10.1103/PhysRevD.81.026007
[12] S.A. Hartnoll, J. Polchinski, E. Silverstein, and D. Tong,
Towards strange metallic holography, J. High Energy Phys.
2010(04),
120 (2010),
http://arxiv.org/abs/0912.1061,
http://dx.doi.org/10.1007/JHEP04(2010)120
[13] S. Ryu, T. Takayanagi, and T. Ugajin, Holographic
conductivity in disordered systems, J. High Energy Phys.
2011(04),
115 (2011),
http://arxiv.org/abs/1103.6068,
http://dx.doi.org/10.1007/JHEP04(2011)115
[14] Sung-Sik Lee, Quantum renormalization group and holography,
J. High Energy Phys.
2014(01), 076 (2014),
http://dx.doi.org/10.1007/JHEP01(2014)076
[15] Sung-Sik Lee, Background independent holographic
description: From matrix field theory to quantum gravity, J.
High Energy Phys.
2012(10), 160 (2012),
http://dx.doi.org/10.1007/JHEP10(2012)160
[16] Sung-Sik Lee, Holographic description of large
N
gauge theory, Nucl. Phys. B
851, 143 (2011),
http://dx.doi.org/10.1016/j.nuclphysb.2011.05.011
[17] Sung-Sik Lee, Holographic description of quantum field
theory, Nucl. Phys. B
832, 567 (2010),
http://dx.doi.org/10.1016/j.nuclphysb.2010.02.022
[18] P. Lunts, S. Bhattacharjee, J. Miller, E. Schnetter, Yong
Baek Kim, and Sung-Sik Lee, Ab initio holography, J. High Energy
Phys.
2015(08), 107 (2015),
http://dx.doi.org/10.1007/JHEP08(2015)107
[19] Ching Hua Lee and Xiao-Liang Qi, Exact holographic mapping
in free fermion systems,
http://arxiv.org/abs/1503.08592
[20] M. Miyaji, T. Takayanagi, Surface/state correspondence as a
generalized holography,
http://arxiv.org/abs/1503.03542
[21] Y. Nakayama,
a–
c test of holography vs
quantum renormalization group,
http://arxiv.org/abs/1401.5257
[22] S. Jackson, R. Pourhasan, and H. Verlinde, Geometric RG
flow,
http://arxiv.org/abs/1312.6914
[23] E. Kiritsis, Wenliang Li, and F. Nitti, Holographic RG flow
and the quantum effective action, Fortschr. Phys.
62(5–6),
389 (2014),
http://dx.doi.org/10.1002/prop.201400007
[24] Sung-Sik Lee, Horizon as critical phenomenon,
http://arxiv.org/abs/1603.08509
[25] S. Sachdev, Bekenstein-Hawking entropy and strange metals,
Phys. Rev. X
5, 041025 (2015),
http://arxiv.org/abs/1506.05111,
http://dx.doi.org/10.1103/PhysRevX.5.041025
[26] Wenbo Fu and S. Sachdev, Numerical study of fermion and
boson models with infinite-range random interactions,
http://arxiv.org/abs/1603.05246
[27] A. Kitaev [unpublished]
[28] A. Jevicki, K. Suzuki, and Junggi Yoon, Bi-Local Holography
in the SYK Model,
http://arxiv.org/abs/1603.06246
[29] J. Maldacena and D. Stanford, Comments on the
Sachdev-Ye-Kitaev model,
http://arxiv.org/abs/1604.07818
[30] W. Witczak-Krempa, E. Sorensen, and S. Sachdev, The
dynamics of quantum criticality via Quantum Monte Carlo and
holography, Nat. Phys.
10, 361 (2014),
http://dx.doi.org/10.1038/nphys2913
[31] W. Witczak-Krempa, Quantum critical charge response from
higher derivatives: is more different?, Phys. Rev. B
89,
161114 (2014),
http://dx.doi.org/10.1103/PhysRevB.89.161114
[32] E. Katz, S. Sachdev, E.S. Sorensen, and W. Witczak-Krempa,
Conformal field theories at non-zero temperature: operator
product expansions, Monte Carlo, and holography,
http://arxiv.org/abs/1409.3841
[33] S. Bai and D.-W. Pang, Holographic charge transport in 2+1
dimensions at finite
N,
http://arxiv.org/abs/1312.3351
[34] Kun Chen, Longxiang Liu, Youjin Deng, L. Pollet and N.
Prokof'ev, Universal conductivity in a two-dimensional
superfluid-to-insulator quantum critical system, Phys. Rev.
Lett.
112, 030402 (2013),
http://dx.doi.org/10.1103/PhysRevLett.112.030402
[35] S.S. Lee, A non-Fermi liquid from a charged black hole: A
critical Fermi ball, Phys. Rev. D
79, 086006 (2009),
http://dx.doi.org/10.1103/PhysRevD.79.086006
[36] H. Liu, J. McGreevy, and D. Vegh, Non-Fermi liquids from
holography, Phys. Rev. D
83, 065029 (2011),
http://dx.doi.org/10.1103/PhysRevD.83.065029
[37] N. Iqbal and Hong Liu, Real-time response in AdS/CFT with
application to spinors, Fortsch. Phys.
57, 367 (2009),
http://dx.doi.org/10.1002/prop.200900057
[38] M. Cubrovic, J. Zaanen, and K. Schalm, String theory,
quantum phase transitions and the emergent Fermi-liquid, Science
325, 439 (2009),
http://dx.doi.org/10.1126/science.1174962
[39] T. Faulkner, Hong Liu, J. McGreevy, and D. Vegh, Emergent
quantum criticality, Fermi surfaces, and AdS
2, Phys.
Rev. D
83, 125002 (2011),
http://dx.doi.org/10.1103/PhysRevD.83.125002
[40] N. Iqbal, Hong Liu, M. Mezei, and Q. Si, Quantum phase
transitions in holographic models of magnetism and
superconductors, Phys. Rev. D
82, 045002 (2010),
http://dx.doi.org/10.1103/PhysRevD.82.045002
[41] T. Faulkner and J. Polchinski, Semi-holographic Fermi
liquids, J. High Energy Phys.
2011(06), 012 (2011),
http://dx.doi.org/10.1007/JHEP06(2011)012
[42] N. Iqbal, Hong Liu, and M. Mezei, Semi-local quantum
liquids,
http://arxiv.org/abs/1105.4621
[43] N. Iqbal, Hong Liu, and M. Mezei, Quantum phase transitions
in semi-local quantum liquids,
http://arxiv.org/abs/1108.0425
[44] R.G. Leigh, A.C. Petkou, and P.M. Petropoulos, Holographic
three-dimensional fluids with nontrivial vorticity,
http://arxiv.org/abs/1108.1393
[45] Q. Si and F. Steglich, Heavy fermions and quantum phase
transitions, Science
329, 1161 (2010),
http://dx.doi.org/10.1126/science.1191195
[46] D. Vollhardt, K. Byczuk, and M. Kollar, Dynamical
mean-field theory, in:
Strongly Correlated Systems, eds.
A. Avella and F. Mancini, Springer Series in Solid-State
Sciences Vol.
117 (Springer, 2011) pp. 203–236,
http://dx.doi.org/10.1007/978-3-642-21831-6_7
[47] S. Sachdev, Holographic metals and the fractionalized Fermi
liquid, Phys. Rev. Lett.
105, 151602 (2010),
http://dx.doi.org/10.1103/PhysRevLett.105.151602
[48] L. Huijse and S. Sachdev, Fermi surfaces and gauge-gravity
duality,
http://arxiv.org/abs/1104.5022
[49] S. Sachdev, A model of a Fermi liquid using gauge-gravity
duality, Phys. Rev. D
84, 066009 (2011),
http://dx.doi.org/10.1103/PhysRevD.84.066009
[50] L. Huijse, S. Sachdev, and B. Swingle, Hidden Fermi
surfaces in compressible states of gauge-gravity duality,
http://arxiv.org/abs/1112.0573
[51] B. Swingle, L. Huijse, and S. Sachdev, Entanglement entropy
of compressible holographic matter: Loop corrections from bulk
fermions,
http://arxiv.org/abs/1308.3234
[52] N. Ogawa, T. Takayanagi, and T. Ugajin, Holographic Fermi
surfaces and entanglement entropy, J. High Energy Phys.
2012(01),
125 (2012),
http://dx.doi.org/10.1007/JHEP01(2012)125
[53] B. Swingle, Entanglement renormalization and holography,
http://arxiv.org/abs/0905.1317
[54] B. Swingle, Constructing holographic spacetimes using
entanglement renormalization,
http://arxiv.org/abs/1209.3304
[55] S. Kachru, X. Liu, and M. Mulligan, Gravity duals of
Lifshitz-like fixed points, Phys. Rev. D
78, 106005
(2008),
http://dx.doi.org/10.1103/PhysRevD.78.106005
[56] N. Iizuka, N. Kundu, P. Narayan, and S.P. Trivedi,
Holographic Fermi and non-Fermi liquids with transitions in
dilaton gravity,
http://arxiv.org/abs/1105.1162
[57] C. Charmousis, B. Goutéraux, B.S. Kim, E. Kiritsis, and R.
Meyer, Effective holographic theories for low-temperature
condensed matter systems, J. High Energy Phys.
2010(11),
151 (2010),
http://dx.doi.org/10.1007/JHEP11(2010)151
[58] B. Goutéraux, J. Smolic, M. Smolic, K. Skenderis, and M.
Taylor, Holography for Einstein-Maxwell-dilaton theories from
generalized dimensional reduction, J. High Energy Phys.
2012(01),
089 (2012),
http://dx.doi.org/10.1007/JHEP01(2012)089
[59] B. Goutéraux and E. Kiritsis, Generalized holographic
quantum criticality at finite density, J. High Energy Phys.
2011(12),
036 (2011),
http://dx.doi.org/10.1007/JHEP12(2011)036
[60] X. Dong, S. Harrison, S. Kachru, G. Torroba, and H. Wang,
Aspects of holography for theories with hyperscaling violation,
http://arxiv.org/abs/1201.1905
[61] E. Perlmutter, Hyperscaling violation from supergravity,
http://arxiv.org/abs/1205.0242
[62] S.A. Hartnoll and A. Tavanfar, Electron stars for
holographic metallic criticality, Phys. Rev. D
83,
046003 (2011),
http://dx.doi.org/10.1103/PhysRevD.83.046003
[63] S.A. Hartnoll, D.M. Hofman, and D. Vegh, Stellar
spectroscopy: Fermions and holographic Lifshitz criticality,
http://arxiv.org/abs/1105.3197
[64] S. Sachdev, A model of a Fermi liquid using gauge-gravity
duality, Phys. Rev. D
84, 066009 (2011),
http://dx.doi.org/10.1103/PhysRevD.84.066009
[65] G.T. Horowitz, J.E. Santos, and D. Tong, Optical
conductivity with holographic lattices,
http://arxiv.org/abs/1204.0519
[66] G.T. Horowitz, J.E. Santos, and D. Tong, Further evidence
for lattice-induced scaling,
http://arxiv.org/abs/1209.1098
[67] Yi Ling, Chao Niu, Jian-Pin Wu, and Zhuo-Yu Xian,
Holographic lattice in Einstein-Maxwell-dilaton gravity, J. High
Energy Phys.
2013(11), 006 (2013),
http://arxiv.org/abs/1309.4580,
http://dx.doi.org/10.1007/JHEP11(2013)006
[68] D. Vegh, Holography without translational symmetry,
http://arxiv.org/abs/1301.0537
[69] D.N. Basov, R.D. Averitt, D. van der Marel, M. Dressel, and
K. Haule, Electrodynamics of correlated electron materials, Rev.
Mod. Phys.
83, 471 (2011),
http://dx.doi.org/10.1103/RevModPhys.83.471
[70] A. Donos and J.P. Gauntlett, Holographic Q-lattices,
http://arxiv.org/abs/1311.3292
[71] Keun-Young Kim, Kyung Kiu Kim, Yunseok Seo, and Sang-Jin
Sin, Coherent/incoherent metal transition in a holographic
model,
http://arxiv.org/abs/1409.8346
[72] B.W. Langley, G. Vanacore, and P.W. Phillips, Absence of
power-law mid-infrared conductivity in gravitational crystals,
J. High Energy Phys.
2015(10), 163 (2015),
http://dx.doi.org/10.1007/JHEP10(2015)163
[73] J. Erdmenger, P. Kerner, and S. Müller, Towards a
holographic realization of Homes’ law, J. High Energy Phys.
2012((10),
021 (2012),
http://dx.doi.org/10.1007/JHEP10(2012)021
[74] J. Erdmenger, B. Herwerth, S. Klug, R. Meyer, and K.
Schalm, S-wave superconductivity in anisotropic holographic
insulators,
http://arxiv.org/abs/1501.07615
[75] C.C. Homes, S.V. Dordevic, M. Strongin, D.A. Bonn, Ruixing
Liang, W.N. Hardy, S. Koymia, Y. Ando, G. Yu, X. Zhao, M.
Greven, D.N. Basov, and T. Timusk, A universal scaling relation
in high-temperature superconductors, Nature (London)
430(6999),
539 (2004),
http://dx.doi.org/10.1038/nature02673
[76] V.G. Kogan, Homes scaling and BCS, Phys. Rev. B
87,
220507(R) (2013),
http://dx.doi.org/10.1103/PhysRevB.87.220507
[77] T. Schneider and H. Keller, Extreme type II
superconductors: Universal trends, Phys. B Condens. Matter
194–196,
1789 (1994),
http://dx.doi.org/10.1016/0921-4526(94)91394-3
[78] Keun-Young Kim, Kyung Kiu Kim, and Miok Park, Ward identity
and Homes' law in a holographic superconductor with momentum
relaxation,
http://arxiv.org/abs/1604.06205
[79] E. Kiritsis and Li Li, Holographic competition of phases
and superconductivity,
http://arxiv.org/abs/1510.00020
[80] Jiunn-Wei Chen, Shou-Huang Dai, D. Maity, and Yun-Long
Zhang, Engineering holographic superconductor phase diagrams,
http://arxiv.org/abs/1603.08259
[81] J.D. Rameau, T.J. Reber, H.-B. Yang, S. Akhanjee, G.D. Gu,
S. Campbell, and P.D. Johnson, Nearly perfect fluidity in a high
temperature superconductor, Phys. Rev. B
90, 134509
(2014),
http://dx.doi.org/10.1103/PhysRevB.90.134509
[82] P. Kovtun, D.T. Son, and A.O. Starinets, Viscosity in
strongly interacting quantum field theories from black hole
physics, Phys. Rev. Lett.
94, 111601 (2005),
http://dx.doi.org/10.1103/PhysRevLett.94.111601
[83] D.T. Son and A.O. Starinets Minkowski-space correlators in
AdS/CFT correspondence: Recipe and applications,
http://arxiv.org/abs/hep-th/0205051
[84] A. Rebhan and D. Steineder, Violation of the holographic
viscosity bound in a strongly coupled anisotropic plasma,
http://arxiv.org/abs/1110.6825
[85] K.A. Mamo, Holographic RG flow of the shear viscosity to
entropy density ratio in strongly coupled anisotropic plasma, J.
High Energy Phys.
2012(10), 070 (2012),
http://dx.doi.org/10.1007/JHEP10(2012)070
[86] R.C. Myers, T. Sierens, and W. Witczak-Krempa A holographic
model for quantum critical responses,
http://arxiv.org/abs/1602.05599
[87] S. Sachdev and Jinwu Ye, Gapless spin-fluid ground state in
a random quantum Heisenberg magnet, Phys. Rev. Lett.
70,
3339 (1993),
http://dx.doi.org/10.1103/PhysRevLett.70.3339
[88] A. Georges, O. Parcollet, and S. Sachdev, Quantum
fluctuations of a nearly critical Heisenberg spin glass, Phys.
Rev. B
63, 4406 (2001),
http://dx.doi.org/10.1103/PhysRevB.63.134406
[89] A. Georges, O. Parcollet, and S. Sachdev, Mean field theory
of a quantum Heisenberg spin glass, Phys. Rev. Lett.
85,
840 (2000),
http://dx.doi.org/10.1103/PhysRevLett.85.840
[90] D. Anninos, S.A. Hartnoll, L. Huijse, and V.L. Martin,
Large N matrices from a nonlocal spin system,
http://arxiv.org/abs/1412.1092
[91] L.F. Cugliandolo, J. Kurchan, G. Parisi, and F. Ritort,
Matrix models as solvable glass models Phys. Rev. Lett.
74,
1012C (1995),
http://dx.doi.org/10.1103/PhysRevLett.74.1012
[92] M. Masuku, M. Mulokwe, and J.P. Rodrigues, Large N matrix
hyperspheres and the gauge-gravity correspondence,
http://arxiv.org/abs/1411.5786
[93] S. Sachdev, Strange metals and the AdS/CFT correspondence,
J. Stat. Mech.
1011, P11022 (2010),
http://dx.doi.org/10.1088/1742-5468/2010/11/p11022
[94] J.M. Magan, Black holes as random particles: entanglement
dynamics in infinite range and matrix models,
http://arxiv.org/abs/1601.04663
[95] C. Bonfield, T. Wartz, J. Schirmer, and D.V. Khveshchenko
[in progress]
[96] L.A. Takhtajan, The picture of low-lying excitations in the
isotropic Heisenberg chain of arbitrary spins, Phys. Lett. A
87,
479 (1982),
http://dx.doi.org/10.1016/0375-9601(82)90764-2
[97] H.M. Babujian, Exact solution of the isotropic Heisenberg
chain with arbitrary spins: Thermodynamics of the model, Nucl.
Phys. B
215, 317B (1983),
http://dx.doi.org/10.1016/0550-3213(83)90668-5
[98] H.M. Babujian, Exact solution of the one-dimensional
isotropic Heisenberg chain with arbitrary spins
S, Phys.
Lett. A
90, 479 (1982),
http://dx.doi.org/10.1016/0375-9601(82)90403-0
[99] A. Shnirman and Yu. Makhlin, Spin-spin correlators in
Majorana representation, Phys. Rev. Lett.
91, 207204
(2003),
http://dx.doi.org/10.1103/PhysRevLett.91.207204
[100] R.S. Whitney, Yu. Makhlin, A. Shnirman, and Y. Gefen,
Geometric nature of the environment-induced Berry phase and
geometric dephasing, Phys. Rev. Lett.
94, 070407 (2005),
http://dx.doi.org/10.1103/PhysRevLett.94.070407
[101] P. Schad, A. Shnirman, and Yu. Makhlin, Using Majorana
spin-1/2 representation for the spin-boson model
http://arxiv.org/abs/1504.05094
[102] P. Schad, Yu. Makhlin, B.N. Narozhny, G. Schön, and A.
Shnirman, Majorana representation for dissipative spin systems,
Annals Phys.
361, 401 (2015),
http://dx.doi.org/10.1016/j.aop.2015.07.006
[103] P. Benincasa and A.V. Ramallo, Holographic Kondo model in
various dimensions, J. High Energy Phys.
2012(06), 133
(2012),
http://dx.doi.org/10.1007/JHEP06(2012)133
[104] S. Harrison, Sh. Kachru, and G. Torroba, A maximally
supersymmetric Kondo model,
http://arxiv.org/abs/1110.5325
[105] J. Erdmenger, C. Hoyos, A. O'Bannon, and Jackson Wu, A
holographic model of the Kondo effect, J. High Energy Phys.
2013(12),
086 (2013),
http://arxiv.org/abs/1310.3271,
http://dx.doi.org/10.1007/JHEP12(2013)086
[106] J. Erdmenger, M. Flory, and M.-N. Newrzella, Bending
branes for DCFT in two dimensions,
http://arxiv.org/abs/1410.7811
[107] J. Erdmenger, M. Flory, C. Hoyos, M.-N. Newrzella, and
Jackson M.S. Wu, Entanglement entropy in a holographic Kondo
model,
http://arxiv.org/abs/1511.03666
[108] S. Ryu and T. Takayanagi, Holographic derivation of
entanglement entropy from the anti-de Sitter space/conformal
field theory correspondence, Phys. Rev. Lett.
96, 181602
(2006),
http://arxiv.org/abs/hep-th/0603001,
http://dx.doi.org/10.1103/PhysRevLett.96.181602
[109] T. Takayanagi, Holographic dual of a boundary conformal
field theory, Phys. Rev. Lett
107, 101602 (2011),
http://dx.doi.org/10.1103/PhysRevLett.107.101602
[110] H. Matsueda, Emergent general relativity from Fisher
information metric,
http://arxiv.org/abs/1310.1831
[111] S.A. Hosseini Mansoori, B. Mirza, and M. Fazel, Hessian
matrix, specific heats, Nambu brackets, and thermodynamic
geometry, J. High Energy Phys.
2015(04), 115 (2015),
http://dx.doi.org/10.1007/JHEP04(2015)115
[112] Bo-Bo Wei, Zhan-Feng Jiang, and Ren-Bao Liu, Thermodynamic
holography,
http://arxiv.org/abs/1411.6342
[113] P. Kumar and T. Sarkar, Geometric critical exponents in
classical and quantum phase transitions, Phys. Rev. E
90,
042145 (2014),
http://dx.doi.org/10.1103/PhysRevE.90.042145
[114] J. Molina-Vilaplana, Information geometry of entanglement
renormalization for free quantum fields, J. High Energy Phys.
2015(09),
002 (2015),
http://dx.doi.org/10.1007/JHEP09(2015)002
[115] Y. Hashizume and H. Matsueda, Information geometry for
Husimi-Temperley model,
http://arxiv.org/abs/1407.2667
[116] Xiao-Liang Qi, Exact holographic mapping and emergent
space-time geometry,
http://arxiv.org/abs/1309.6282
[117] Wei Li and T. Takayanagi, Holography and entanglement in
flat spacetime, Phys. Rev. Lett.
106, 141301 (2011),
http://dx.doi.org/10.1103/PhysRevLett.106.141301
[118] Xing Huang and Feng-Li Lin, Entanglement renormalization
and integral geometry,
http://arxiv.org/abs/1507.04633
[119] M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi, and K.
Watanabe, Gravity dual of quantum information metric,
http://arxiv.org/abs/1507.07555
[120] D. Sels and M. Wouters, Quantum statistical gravity: tTime
dilation due to local information in many-body quantum systems,
http://arxiv.org/abs/1602.05707
[121] Bo Yang, Z. Papic, E.H. Rezayi, R.N. Bhatt, and F.D.M.
Haldane, Band mass anisotropy and the intrinsic metric of
fractional quantum Hall systems, Phys. Rev. B
85, 165318
(2012),
http://dx.doi.org/10.1103/PhysRevB.85.165318
[122] A. Ghazaryan and T. Chakraborty, Emergent geometry
fluctuation in quantum confined electron systems,
http://arxiv.org/abs/1403.6485
[123] R.R. Biswas, Semiclassical theory of viscosity in quantum
Hall states,
http://arxiv.org/abs/1311.7149
[124] T. Neupert, C. Chamon, and C. Mudry, How to measure the
quantum geometry of Bloch bands, Phys. Rev. B
87, 245103
(2013),
http://arxiv.org/abs/1303.4643,
http://dx.doi.org/10.1103/PhysRevB.87.245103
[125] S. Matsuura and S. Ryu, Momentum space metric, non-local
operator, and topological insulators, Phys. Rev. B
82,
245113,
http://dx.doi.org/10.1103/PhysRevB.82.245113
[126] D. Bauer, T.S. Jackson, and R. Roy, Quantum geometry and
stability of the fractional quantum Hall effect in the
Hofstadter model,
http://arxiv.org/abs/1504.07185
[127] J.M. Hickey, S. Genway, and J.P. Garrahan, Dynamical phase
transitions, time-integrated observables and geometry of states,
Phys. Rev. B
89, 054301 (2014),
http://dx.doi.org/10.1103/PhysRevB.89.054301
[128] M. Kolodrubetz, V. Gritsev, and A. Polkovnikov,
Classifying and measuring the geometry of the quantum ground
state manifold, Phys. Rev. B
88, 064304 (2013),
http://dx.doi.org/10.1103/PhysRevB.88.064304
[129] A. Mollabashi, M. Nozaki, S. Ryu, and T. Takayanagi,
Holographic geometry of cMERA for quantum quenches and finite
temperature, J. High Energy Phys.
2014(03), 098 (2014),
http://dx.doi.org/10.1007/JHEP03(2014)098
[130] D.V. Khveshchenko, Taking a critical look at holographic
critical matter, Lith. J. Phys.
56, 208 (2015),
http://dx.doi.org/10.3952/physics.v55i3.3150
[131] J.M. Harris, Y.F. Yan, P. Matl, N.P. Ong, P.W. Anderson,
T. Kimura, and K. Kitazawa, Violation of Kohler's rule in the
normal-state magnetoresistance of YBa
2Cu
3O
7–δ
and La
2Sr
xCuO
4, Phys.
Rev. Lett.
75, 1391 (1995),
http://dx.doi.org/10.1103/PhysRevLett.75.1391
[132] P.W. Anderson, Hall effect in the two-dimensional
Luttinger liquid, Phys. Rev. Lett.
67, 2092 (1991),
http://dx.doi.org/10.1103/PhysRevLett.67.2092
[133] P. Coleman, A.J. Schofield, and A.M. Tsvelik,
Phenomenological transport equation for the cuprate metals,
Phys. Rev. Lett.
76, 1324 (1996),
http://dx.doi.org/10.1103/PhysRevLett.76.1324
[134] C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams,
and A.E. Ruckenstein, Phenomenology of the normal state of Cu-O
high-temperature superconductors, Phys. Rev. Lett.
64,
497 (1990),
http://dx.doi.org/10.1103/PhysRevLett.64.497
[135] J.W. Loram, K.A. Mirza, J.M. Wade, J.R. Cooper, and W.Y.
Liang, The electronic specific heat of cuprate superconductors,
Physica C
235–240, 134 (1994),
http://dx.doi.org/10.1016/0921-4534(94)91331-5
[136] A. Karch, Conductivities for hyperscaling violating
geometries, J. High Energy Phys.
2014(06), 140 (2014),
http://dx.doi.org/10.1007/JHEP06(2014)140
[137] S.A. Hartnoll and A. Karch, Scaling theory of the cuprate
strange metals, Phys. Rev. B
91, 155126 (2015),
http://dx.doi.org/10.1103/PhysRevB.91.155126
[138] D.V. Khveshchenko, Viable phenomenologies of the normal
state of cuprates, Europhys. Lett.
111, 17005 (2015),
http://dx.doi.org/10.1209/0295-5075/111/17003
[139] A.V. Chubukov, D.L. Maslov, and V.I. Yudson, Optical
conductivity of a two-dimensional metal at the onset of
spin-density-wave order,
http://arxiv.org/abs/1401.1461
[140] D.L. Maslov, V.I. Yudson, and A.V. Chubukov, Resistivity
of a non-Galilean–invariant Fermi liquid near Pomeranchuk
quantum criticality, Phys. Rev. Lett.
106, 106403
(2011),
http://dx.doi.org/10.1103/PhysRevLett.106.106403
[141] H.K. Pal, V.I. Yudson, and D.L. Maslov, Resistivity of
non-Galilean-invariant Fermi- and non-Fermi liquids, Lith. J.
Phys.
52, 142 (2012),
http://dx.doi.org/10.3952/physics.v52i2.2358
[142] Mu-Yong Choi and J.S. Kim, Thermopower of high-
Tc
cuprates, Phys. Rev. B
59, 000192 (1999),
http://dx.doi.org/10.1103/PhysRevB.59.192
[143] Y. Zhang, N.P. Ong, P.W. Anderson, D.A. Bonn, R. Liang,
and W.N. Hardy, Determining the Wiedemann-Franz ratio from the
thermal Hall conductivity: Application to Cu and YBa
2Cu
3O
6.95,
Phys. Rev. Lett.
84, 2219 (2000),
http://dx.doi.org/10.1103/PhysRevLett.84.2219
[144] Y. Wang, L. Li, and N.P. Ong, The Nernst effect in high-
Tc
superconductors, Phys. Rev. B
73, 024510 (2006),
http://dx.doi.org/10.1103/PhysRevB.73.024510
[145] M. Matusiak and Th. Wolf, Lorenz number in the optimally
doped and underdoped superconductor EuBa
2Cu
3O
y,
Phys. Rev. B
72, 054508 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.054508
[146] M. Matusiak, J. Hori, and T. Suzuki, The Hall-Lorenz
number in the La
1.855Sr
0.145CuO
4
single crystal, Solid State Comm.
139, 376 (2006),
http://dx.doi.org/10.1016/j.ssc.2006.06.024
[147] M. Matusiak, K. Rogacki, and B.W. Veal, Enhancement of the
Hall-Lorenz number in optimally doped YBa
2Cu
3O
7–d,
Europhys. Lett.
88, 47005 (2009),
http://dx.doi.org/10.1209/0295-5075/88/47005
[148] B. Goutéraux, Universal scaling properties of extremal
cohesive holographic phases, J. High Energy Phys.
2014(01),
080 (2014),
http://dx.doi.org/10.1007/JHEP01(2014)080
[149] B. Goutéraux, Charge transport in holography with momentum
dissipation, J. High Energy Phys.
2014(04), 181 (2014),
http://dx.doi.org/10.1007/JHEP04(2014)181
[150] N. Barisic, M.K. Chan, M.J. Veit, C.J. Dorow, Y. Ge, Y.
Tang, W. Tabis, G. Yu, X. Zhao, and M. Greven, Hidden
Fermi-liquid behavior throughout the phase diagram of the
cuprates,
http://arxiv.org/abs/1507.07885
[151] G. Grissonnanche, F. Laliberte, S. Dufour-Beausejour, M.
Matusiak, S. Badoux, F.F. Tafti, B. Michon, A. Riopel, O.
Cyr-Choiniere, J.C. Baglo, B.J. Ramshaw, R. Liang, D.A. Bonn,
W.N. Hardy, S. Kramer, D. LeBoeuf, D. Graf, N. Doiron-Leyraud,
and L. Taillefer, Wiedemann-Franz law in the underdoped cuprate
superconductor YBa
2Cu
3O
y,
http://arxiv.org/abs/1503.07572
[152] G. Grissonnanche, F. Laliberte, S. Dufour-Beausejour, A.
Riopel, S. Badoux, M. Caouette-Mansour, M. Matusiak, A.
Juneau-Fecteau, P. Bourgeois-Hope, O. Cyr-Choiniere, J.C. Baglo,
B.J. Ramshaw, R. Liang, D.A. Bonn, W.N. Hardy, S. Kramer, D.
LeBoeuf, D. Graf, N. Doiron-Leyraud, and L. Taillefer, Onset
field for Fermi-surface reconstruction in the cuprate
superconductor YBCO,
http://arxiv.org/abs/1508.05486
[153] A. Karch, Multiband models for field theories with
anomalous current dimension,
http://arxiv.org/abs/1504.02478
[154] A. Karch, K. Limtragool, and P.W. Phillips, Unparticles
and anomalous dimensions in the cuprates,
http://arxiv.org/abs/1511.02868
[155] K. Limtragool and P.W. Phillips, Anomalous dimension of
the electrical current in the normal state of the cuprates from
the fractional Aharonov-Bohm effect,
http://arxiv.org/abs/1601.02340
[156] A. Amoretti, M. Baggioli, N. Magnoli, and D. Musso,
Chasing the cuprates with dilatonic dyons,
http://arxiv.org/abs/1603.03029
[157] E. Abrahams, J. Schmalian, and P. Wölfle, Strong coupling
theory of heavy fermion criticality, Phys. Rev. B
90,
045105 (2014),
http://dx.doi.org/10.1103/PhysRevB.90.045105
[158] M. Vojta, R. Bulla, and P. Wölfle, Critical quasiparticles
in single-impurity and Kondo lattice models, Eur. Phys. J.
Special Topics
224, 1127 (2015),
http://dx.doi.org/10.1140/epjst/e2015-02449-0
[159] P. Wölfle and E. Abrahams, Spin-flip scattering of
critical quasiparticles and the phase diagram of YbRh
2Si
2,
Phys. Rev. B
92, 155111 (2015),
http://arxiv.org/abs/1506.08476,
http://dx.doi.org/10.1103/PhysRevB.92.155111
[160] T.R. Kirkpatrick and D. Belitz, Pre-asymptotic critical
behavior and effective exponents in disordered metallic quantum
ferromagnets, Phys. Rev. Lett.
113, 127203 (2014),
http://dx.doi.org/10.1103/PhysRevLett.113.127203
[161] T.R. Kirkpatrick and D. Belitz, Exponent relations at
quantum phase transitions, with applications to metallic quantum
ferromagnets, Phys. Rev. B
91, 214407 (2015),
http://dx.doi.org/10.1103/PhysRevB.91.214407
[162] T.R. Kirkpatrick and D. Belitz, Quantum correlations in
metals that grow in time and space, Phys. Rev. B
93,
125130 (2016),
http://arxiv.org/abs/1508.01830,
http://dx.doi.org/10.1103/PhysRevB.93.125130
[163] S.A. Maier and P. Strack, Universality in
antiferromagnetic strange metals,
http://arxiv.org/abs/1510.01331
[164] P. Kovtun and A. Ritz, Universal conductivity and central
charges, Phys. Rev. D
78, 066009 (2008),
http://dx.doi.org/10.1103/PhysRevD.78.066009
[165] P.M. Hogan and A.G. Green, Universal non-linear
conductivity near to an itinerant-electron ferromagnetic quantum
critical point, Phys. Rev. B
78, 195104 (2008),
http://dx.doi.org/10.1103/PhysRevB.78.195104
[166] N. Iqbal and Hong Liu, Universality of the hydrodynamic
limit in AdS/CFT and the membrane paradigm, Phys. Rev. D
79,
025023 (2009),
http://arxiv.org/abs/0809.3808,
http://dx.doi.org/10.1103/PhysRevD.79.025023
[167] S. Jain, Universal thermal and electrical conductivity
from holography, J. High Energy Phys.
2010(11), 092
(2010),
http://dx.doi.org/10.1007/JHEP11(2010)092
[168] S. Jain, Universal properties of thermal and electrical
conductivity of gauge theory plasma from holography, J. High
Energy Phys.
2010(06), 023 (2010),
http://dx.doi.org/10.1007/JHEP06(2010)023
[169] S. Jain, Holographic electrical and thermal conductivity
in strongly coupled gauge theory with multiple chemical
potentials, J. High Energy Phys.
2010(03), 101 (2010),
http://dx.doi.org/10.1007/JHEP03(2010)101
[170] T. Faulkner, N. Iqbal, Hong Liu, J. McGreevy, and D. Vegh,
Charge transport by holographic Fermi surfaces, Phys. Rev. D
8,
045016 (2013),
http://dx.doi.org/10.1103/PhysRevD.88.045016
[171] S.A. Hartnoll and D.M. Hofman, Locally critical umklapp
scattering and holography, Phys. Rev. Lett.
108, 241601
(2012),
http://dx.doi.org/10.1103/PhysRevLett.108.241601
[172] A. Donos and S.A. Hartnoll, Metal-insulator transition in
holography, Nat. Phys.
9, 649 (2013),
http://dx.doi.org/10.1038/nphys2701
[173] A. Donos and S.A. Hartnoll, Universal linear in emperature
resistivity from black hole superradiance, Phys. Rev. D
86,
124046 (2012),
http://dx.doi.org/10.1103/PhysRevD.86.124046
[174] K. Balasubramanian and C.P. Herzog, Losing forward
momentum holographically,
http://arxiv.org/abs/1312.4953
[175] S.A. Hartnoll and J.E. Santos, Disordered horizons:
Holography of randomly disordered fixed points,
http://arxiv.org/abs/1402.0872
[176] J.-R. Sun, S.-Y. Wu, and H.-Q. Zhang, Mimic the optical
conductivity in disordered solids via gauge/gravity duality,
Phys. Lett. B
729, 177 (2014),
http://dx.doi.org/10.1016/j.physletb.2014.01.005
[177] A. Donos and J.P. Gauntlett, Novel metals and insulators
from holography, J. High Energy Phys.
2014(06), 007
(2014),
http://arxiv.org/abs/1401.5077,
http://dx.doi.org/10.1007/JHEP06(2014)007
[178] M. Blake and D. Tong, Universal resistivity from
holographic massive gravity, Phys. Rev. D
88, 106004
(2013),
http://dx.doi.org/10.1103/PhysRevD.88.106004
[179] T. Andrade and B. Withers, A simple holographic model of
momentum relaxation,
http://arxiv.org/abs/1311.5157
[180] M. Blake, D. Tong, and D. Vegh, Holographic lattices give
the graviton a mass, Phys. Rev. Lett.
112, 071602
(2014),
http://dx.doi.org/10.1103/PhysRevLett.112.071602
[181] M. Blake and A. Donos, Quantum critical transport and the
Hall angle,
http://arxiv.org/abs/1406.1659
[182] S.A. Hartnoll,Theory of universal incoherent metallic
transport,
http://arxiv.org/abs/1405.3651
[183] A. Amoretti, A. Braggio, N. Magnoli, and D. Musso, Bounds
on charge and heat diffusivities in momentum dissipating
holography, J. High Energy Phys.
2015(07), 102 (2015),
http://dx.doi.org/10.1007/JHEP07(2015)102
[184] M. Baggioli and O. Pujolas, Holographic polarons, the
metal-insulator transition and massive gravity, Phys. Rev. Lett.
114, 251602 (2015),
http://dx.doi.org/10.1103/PhysRevLett.114.251602
[185] G. Gur-Ari, S.A. Hartnoll, and R. Mahajan, Transport in
Chern-Simons-matter theories,
http://arxiv.org/abs/1605.01122
[186] E. Banks, A. Donos, and J.P. Gauntlett, Thermoelectric DC
conductivities and Stokes flows on black hole horizons, J. High
Energy Phys.
2015(10), 103 (2015),
http://arxiv.org/abs/1507.00234,
http://dx.doi.org/10.1007/JHEP10(2015)103
[187] A. Donos and J.P. Gauntlett, The thermoelectric properties
of inhomogeneous holographic lattices, J. High Energy Phys.
2015(01),
035 (2015),
http://arxiv.org/abs/1409.6875,
http://dx.doi.org/10.1007/JHEP01(2015)035
[188] A. Donos and J.P. Gauntlett, Navier-Stokes equations on
black hole horizons and DC thermoelectric conductivity, Phys.
Rev. D
92, 121901 (2015),
http://arxiv.org/abs/1506.01360,
http://dx.doi.org/10.1103/PhysRevD.92.121901
[189] A. Donos, J.P. Gauntlett, T. Griffin, and L. Melgar, DC
conductivity of magnetised holographic matter, J. High Energy
Phys.
2016(01), 113 (2016),
http://arxiv.org/abs/1511.00713,
http://dx.doi.org/10.1007/JHEP01(2016)113
[190] S. Bhattacharyya, V.E. Hubeny, S. Minwalla, and M.
Rangamani, Nonlinear fluid dynamics from gravity, J. High Energy
Phys.
2008(02), 045 (2008),
http://arxiv.org/abs/0712.2456
[191] M. Rangamani, Gravity and hydrodynamics: Lectures on the
fluid-gravity correspondence, Classical Quant. Grav.
26,
224003 (2009),
http://dx.doi.org/10.1088/0264-9381/26/22/224003
[192] V.E. Hubeny, The fluid/gravity correspondence: A new
perspective on the membrane paradigm, Classical Quant. Grav.
28,
114007 (2011),
http://dx.doi.org/10.1088/0264-9381/28/11/114007
[193] V.E. Hubeny, S. Minwalla, and M. Rangamani, The
fluid/gravity correspondence, in:
Black Holes in Higher
Dimensions, ed. G.T. Horowitz (Cambridge, Cambridge
University Press, 2012),
http://dx.doi.org/10.1017/CBO9781139004176.014
[194] R.A. Davison, Momentum relaxation in holographic massive
gravity, Phys. Rev. D
88, 086003 (2013),
http://dx.doi.org/10.1103/PhysRevD.88.086003
[195] R.A. Davison, B. Goutéraux, and S.A. Hartnoll, Incoherent
transport in clean quantum critical metals,
http://arxiv.org/abs/1507.07137
[196] M. Blake, Momentum relaxation from the fluid/gravity
correspondence, J. High Energy Phys.
2015(09), 010
(2015),
http://dx.doi.org/10.1007/JHEP09(2015)010
[197] M. Blake, Universal charge diffusion and the butterfly
effect,
http://arxiv.org/abs/1603.08510
[198] M. Blake, Universal diffusion in incoherent black holes,
http://arxiv.org/abs/1604.01754
[199] R.A. Davison and B. Goutéraux, Dissecting holographic
conductivities, J. High Energy Phys.
2015(09), 090
(2015),
http://dx.doi.org/10.1007/JHEP09(2015)090
[200] R.A. Davison and B. Goutéraux, Momentum dissipation and
effective theories of coherent and incoherent transport, J. High
Energy Phys.
2015(01), 039 (2015),
http://dx.doi.org/10.1007/JHEP01(2015)039
[201] A. Lucas, S. Sachdev, and K. Schalm, Scale-invariant
hyperscaling-violating holographic theories and the resistivity
of strange metals with random-field disorder,
http://arxiv.org/abs/1401.7993
[202] S.A. Hartnoll, R. Mahajan, M. Punk, and S. Sachdev,
Transport near the Ising-nematic quantum critical point of
metals in two dimensions,
http://arxiv.org/abs/1401.7012
[203] A. Eberlein, I. Mandal, and S. Sachdev, Hyperscaling
violation at the Ising-nematic quantum critical point in two
dimensional metals,
http://arxiv.org/abs/1605.00657
[204] J. Zaanen, Superconductivity: Why the temperature is high,
Nature (London)
430(6999), 512 (2004),
http://dx.doi.org/10.1038/430512a
[205] R.A. Davison, K. Schalm, and J. Zaanen, Holographic
duality and the resistivity of strange metals, Phys. Rev. B
89,
245116 (2014),
http://dx.doi.org/10.1103/PhysRevB.89.245116
[206] D.V. Khveshchenko, Searching for non-Fermi liquids under
holographic light, Phys. Rev. B
86, 115115 (2012),
http://dx.doi.org/10.1103/PhysRevB.86.115115
[207] Da-Wei Pang, Probing holographic semilocal quantum liquids
with D-branes, Phys. Rev. D
88, 046002 (2013),
http://dx.doi.org/10.1103/PhysRevD.88.046002
[208] M. Edalati and J.F. Pedraza, Aspects of current
correlators in holographic theories with hyperscaling violation,
Phys. Rev. D
88, 086004 (2013),
http://dx.doi.org/10.1103/PhysRevD.88.086004
[209] P. Dey and S. Roy, Zero sound in strange metals with
hyperscaling violation from holography,
http://arxiv.org/abs/1307.0195
[210] S.A. Hartnoll, P.K. Kovtun, M. Mueller, and S. Sachdev,
Theory of the Nernst effect near quantum phase transitions in
condensed matter, and in dyonic black holes, Phys. Rev. B
76,
144502 (2007),
http://dx.doi.org/10.1103/PhysRevB.76.144502
[211] Keun-Young Kim, Kyung Kiu Kim, Yunseok Seo, and Sang-Jin
Sin, Thermoelectric conductivities at finite magnetic field and
the Nernst effect,
http://arxiv.org/abs/1502.05386
[212] K. Landsteiner, Yan Liu, and Ya-Wen Sun, Negative
magnetoresistivity in chiral fluids and holography,
http://arxiv.org/abs/1410.6399
[213] M. Blake, A. Donos, and N. Lohitsiri,
Magnetothermoelectric response from holography, J. High Energy
Phys.
2015(08), 124 (2015),
http://dx.doi.org/10.1007/JHEP08(2015)124
[214] A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli, and D.
Musso, Analytic DC thermo-electric conductivities in holography
with massive gravitons, Phys. Rev. D
91, 025002 (2015),
http://dx.doi.org/10.1103/PhysRevD.91.025002
[215] A. Amoretti and D. Musso, Magneto-transport from momentum
dissipating holography,
http://arxiv.org/abs/1502.02631
[216] H. Bantilan, J.T. Brewer, T. Ishii, W.E. Lewis, and P.
Romatschke, String theory based predictions for novel collective
modes in strongly interacting Fermi gases,
http://arxiv.org/abs/1605.00014
[217] S. Grozdanov, N. Kaplis, and A.O. Starinets, From strong
to weak coupling in holographic models of thermalization,
http://arxiv.org/abs/1605.02173
[218] P. Jung and A. Rosch, Lower bounds for the conductivities
of correlated quantum systems, Phys. Rev. B
75, 245104
(2007),
http://dx.doi.org/10.1103/PhysRevB.75.245104
[219] A. Lucas and S. Sachdev, Conductivity of weakly disordered
strange metals: From conformal to hyperscaling-violating
regimes, Nucl. Phys. B
892, 239 (2015),
http://dx.doi.org/10.1016/j.nuclphysb.2015.01.017
[220] A. Lucas, Conductivity of a strange metal: From holography
to memory functions, J. High Energy Phys.
2015(03), 071
(2015),
http://dx.doi.org/10.1007/JHEP03(2015)071
[221] A. Lucas and S. Sachdev, Memory matrix theory of
magnetotransport in strange metals, Phys. Rev. B
91,
195122 (2015),
http://dx.doi.org/10.1103/PhysRevB.91.195122
[222] A. Lucas, Hydrodynamic transport in strongly coupled
disordered quantum field theories,
http://arxiv.org/abs/1506.02662
[223] S. Grozdanov, A. Lucas, S. Sachdev, and K. Schalm, Absence
of disorder-driven metal-insulator transitions in simple
holographic models, Phys. Rev. Lett.
115, 221601 (2015),
http://arxiv.org/abs/1507.00003,
http://dx.doi.org/10.1103/PhysRevLett.115.221601
[224] S. Grozdanov, A. Lucas, and K. Schalm, Incoherent thermal
transport from dirty black holes,
http://arxiv.org/abs/1511.05970
[225] T.N. Ikeda, A. Lucas, and Y. Nakai, Conductivity bounds in
probe brane models,
http://arxiv.org/abs/1601.07882
[226] X-H. Ge, S-J. Sin, and S-F. Wu, Lower bound of electrical
conductivity from holography,
http://arxiv.org/abs/1512.01917
[227] M. Baggioli and O. Pujolas, On holographic disorder-driven
metal-insulator transitions,
http://arxiv.org/abs/1601.07897
[228] B. Goutéraux, E. Kiritsis, and Wei-Jia Li, Effective
holographic theories of momentum relaxation and violation of
conductivity bound,
http://arxiv.org/abs/1602.01067
[229] M. Baggioli and O. Pujolas, On effective holographic Mott
insulators,
http://arxiv.org/abs/1604.08915
[230] E. Abrahams, S.V. Kravchenko, and M.P. Sarachik Metallic
behavior and related phenomena in two dimensions, Rev. Mod.
Phys.
73, 251 (2001),
http://dx.doi.org/10.1103/RevModPhys.73.251
[231] S.V. Kravchenko and M.P. Sarachik, Metal-insulator
transition in two-dimensional electron systems, Rep. Progr.
Phys.
67, 1 (2004),
http://dx.doi.org/10.1088/0034-4885/67/1/R01
[232] S.V. Kravchenko and M.P. Sarachik, A metal-insulator
transition in 2D: Established facts and open questions,
http://arxiv.org/abs/1003.2968
[233] B. Spivak, S.V. Kravchenko, S.A. Kivelson, and X.P.A. Gao,
Colloquium: Transport in strongly correlated two dimensional
electron fluids, Rev. Mod. Phys.
82, 1743S (2010),
http://dx.doi.org/10.1103/RevModPhys.82.1743
[234] K. Damle and S. Sachdev, Non-zero temperature transport
near quantum critical points, Phys. Rev. B
56, 8714
(1997),
http://dx.doi.org/10.1103/PhysRevB.56.8714
[235] S. Sachdev, Nonzero temperature transport near fractional
quantum Hall critical points, Phys. Rev. B
57, 7157
(1998),
http://dx.doi.org/10.1103/PhysRevB.57.7157
[236] K. Damle and S. Sachdev, Spin dynamics and transport in
gapped one-dimensional Heisenberg antiferromagnets at nonzero
temperatures, Phys. Rev. B
57, 8307 (1998),
http://dx.doi.org/10.1103/PhysRevB.57.8307
[237] M. Mueller, L. Fritz, and S. Sachdev, Quantum-critical
relativistic magnetotransport in graphene, Phys. Rev. B
78,
115406 (2008),
http://dx.doi.org/10.1103/PhysRevB.78.115406
[238] L. Fritz, J. Schmalian, M. Mueller, and S. Sachdev,
Quantum critical transport in clean graphene, Phys. Rev. B
78,
085416 (2008),
http://dx.doi.org/10.1103/PhysRevB.78.085416
[239] L. Fritz, Quantum-critical transport at a
semimetal-to-insulator transition on the honeycomb lattice,
Phys. Rev. B
83, 035125 (2011),
http://dx.doi.org/10.1103/PhysRevB.83.035125
[240] B.N. Narozhny, I.V. Gornyi, M. Titov, M. Schütt, and A.D.
Mirlin, Hydrodynamics in graphene: Linear-response transport,
Phys. Rev. B
91, 035414 (2015),
http://dx.doi.org/10.1103/PhysRevB.91.035414
[241] U. Briskot, M. Schütt, I.V. Gornyi, M. Titov, B.N.
Narozhny, and A.D. Mirlin, Collision-dominated nonlinear
hydrodynamics in graphene, Phys. Rev. B
92, 115426
(2015),
http://dx.doi.org/10.1103/PhysRevB.92.115426
[242] M. Schütt, P.M. Ostrovsky, M. Titov, I.V. Gornyi, B.N.
Narozhny, and A.D. Mirlin, Coulomb drag in graphene near the
Dirac point, Phys. Rev. Lett.
110, 026601 (2013),
http://dx.doi.org/10.1103/PhysRevLett.110.026601
[243] M. Titov, R.V. Gorbachev, B.N. Narozhny, T. Tudorovskiy,
M. Schuett, P.M. Ostrovsky, I.V. Gornyi, A.D. Mirlin, M.I.
Katsnelson, K.S. Novoselov, A.K. Geim, and L.A. Ponomarenko,
Giant magneto-drag in graphene at charge neutrality, Phys. Rev.
Lett.
111, 166601 (2013),
http://dx.doi.org/10.1103/PhysRevLett.111.166601
[244] A.B. Kashuba, Conductivity of defectless graphene, Phys.
Rev. B
78, 085415 (2008),
http://dx.doi.org/10.1103/PhysRevB.78.085415
[245] M.S. Foster and I.L. Aleiner, Slow imbalance relaxation
and thermoelectric transport in graphene, Phys. Rev. B
79,
085415 (2009),
http://dx.doi.org/10.1103/PhysRevB.79.085415
[246] Hong-Yi Xie and M.S. Foster, Transport coefficients of
graphene: Interplay of impurity scattering, Coulomb interaction,
and optical phonons,
http://arxiv.org/abs/1601.05862
[247] J.M. Link, P.P. Orth, D.E. Sheehy, and J. Schmalian,
Universal collisionless transport of graphene,
http://arxiv.org/abs/1511.05984
[248] F. Herbut, V. Juričić, and O. Vafek, Coulomb interaction,
ripples, and the minimal conductivity of graphene, Phys. Rev.
Lett.
100, 046403 (2008),
http://dx.doi.org/10.1103/PhysRevLett.100.046403
[249] E.G. Mishchenko, Minimal conductivity in graphene:
Interaction corrections and ultraviolet anomaly, Europhys. Lett.
83, 17005 (2008),
http://dx.doi.org/10.1209/0295-5075/83/17005
[250] D.E. Sheehy and J. Schmalian, Quantum critical scaling in
graphene, Phys. Rev. Lett.
99, 226803 (2007),
http://dx.doi.org/10.1103/PhysRevLett.99.226803
[251] D.E. Sheehy and J. Schmalian, Optical transparency of
graphene as determined by the fine-structure constant, Phys.
Rev. B
80, 193411 (2009),
http://dx.doi.org/10.1103/PhysRevB.80.193411
[252] V. Juričić, O. Vafek, and I.F. Herbut, Conductivity of
interacting massless Dirac particles in graphene: Collisionless
regime, Phys. Rev. B
82, 235402 (2010),
http://dx.doi.org/10.1103/PhysRevB.82.235402
[253] S. Teber and A.V. Kotikov, Interaction corrections to the
minimal conductivity of graphene via dimensional regularization,
Europhys. Lett.
107, 57001 (2014),
http://dx.doi.org/10.1209/0295-5075/107/57001
[254] D.A. Bandurin, I. Torre, R. Krishna Kumar, M. Ben Shalom,
A. Tomadin, A. Principi, G.H. Auton, E. Khestanova, K.S.
Novoselov, I.V. Grigorieva, L.A. Ponomarenko, A K. Geim, and M.
Polini, Negative local resistance caused by viscous electron
backflow in graphene, Science
351, 1055 (2016),
http://dx.doi.org/10.1126/science.aad0201
[255] A. Lucas, J. Crossno, Kin Chung Fong, Philip Kim, and S.
Sachdev, Transport in inhomogeneous quantum critical fluids and
in the Dirac fluid in graphene,
http://arxiv.org/abs/1510.01738
[256] A. Lucas, Sound waves and resonances in electron-hole
plasma,
http://arxiv.org/abs/1604.03955
[257] D.E. Kharzeev and Ho-Ung Yee, Anomalies and time reversal
invariance in relativistic hydrodynamics: the second order and
higher dimensional formulations,
http://arxiv.org/abs/1105.6360
[258] D.T. Son and B.Z. Spivak, Chiral anomaly and classical
negative magnetoresistance of Weyl metals, Phys. Rev. B
88,
104412 (2013),
http://dx.doi.org/10.1103/PhysRevB.88.104412
[259] B.Z. Spivak and A.V. Andreev, Magneto-transport phenomena
related to the chiral anomaly in Weyl semimetals,
http://arxiv.org/abs/1510.01817
[260] Ya-Wen Sun and Qing Yang, Negative magnetoresistivity in
holography,
http://arxiv.org/abs/1603.02624
[261] A. Lucas, R.A. Davison, and S. Sachdev, Hydrodynamic
theory of thermoelectric transport and negative
magnetoresistance in Weyl semimetals,
http://arxiv.org/abs/1604.08598
[262] V.P.J. Jacobs, S.J.G. Vandoren, and H.T.C. Stoof,
Holographic interaction effects on transport in Dirac
semimetals, Phys. Rev. B.
90, 045108 (2014),
http://dx.doi.org/10.1103/PhysRevB.90.045108
[263] U. Gursoy, V. Jacobs, E. Plauschinn, H. Stoof, and S.
Vandoren, Holographic models for undoped Weyl semimetals, J.
High Energy Phys.
2013(04), 127 (2013),
http://dx.doi.org/10.1007/JHEP04(2013)127
[264] V.P.J. Jacobs, S. Grubinskas, and H.T.C. Stoof, Towards a
field-theory interpretation of bottom-up holography, J. High
Energy Phys.
2015(04), 033 (2015),
http://arxiv.org/abs/1411.4051,
http://dx.doi.org/10.1007/JHEP04(2015)033
[265] V.P.J. Jacobs, P. Betzios, U. Gursoy, and H.T.C. Stoof,
Electromagnetic response of interacting Weyl semimetals,
http://arxiv.org/abs/1512.04883
[266] L. Levitov and G. Falkovich, Electron viscosity, current
vortices and negative nonlocal resistance in graphene,
http://arxiv.org/abs/1508.00836
[267] P.J.W. Moll, P. Kushwaha, N. Nandi, B. Schmidt, and A.P.
Mackenzie, Evidence for hydrodynamic electron flow in PdCoO
2,
http://arxiv.org/abs/1509.05691
[268] J. Sonner and A.G. Green, Hawking radiation and
nonequilibrium quantum critical current noise, Phys. Rev. Lett.
109, 091601 (2012),
http://dx.doi.org/10.1103/PhysRevLett.109.091601
[269] D. Bernard and B. Doyon, Non-equilibrium steady-states in
conformal field theory, Annales Henri Poincaré
16, 113
(2015),
http://dx.doi.org/10.1007/s00023-014-0314-8
[270] D. Bernard and B. Doyon, A hydrodynamic approach to
non-equilibrium conformal field theories,
http://arxiv.org/abs/1507.07474
[271] D. Bernard and B. Doyon, Energy flow in non-equilibrium
conformal field theory, J. Phys. A
45, 362001 (2012),
http://dx.doi.org/10.1088/1751-8113/45/36/362001
[272] M.J. Bhaseen, B. Doyon, A. Lucas, and K. Schalm, Far from
equilibrium energy flow in quantum critical systems, Nat. Phys.
11, 509 (2015),
http://dx.doi.org/10.1038/nphys3320
[273] A. Kundu and S. Kundu, Steady-state physics, effective
temperature dynamics in holography,
http://arxiv.org/abs/1307.6607
[274] C. Karrasch, R. Ilan, and J.E. Moore, Non-equilibrium
thermal transport and its relation to linear response,
http://arxiv.org/abs/1211.2236
[275] I. Bakas, K. Skenderis, and B. Withers, Self-similar
equilibration of strongly interacting systems from holography,
http://arxiv.org/abs/1512.09151
[276] A. Lucas, K. Schalm, B. Doyon, and M.J. Bhaseen, Shock
waves, rarefaction waves and non-equilibrium steady states in
quantum critical systems,
http://arxiv.org/abs/1512.09037
[277] D.V. Khveshchenko, Simulating holographic correspondence
in flexible graphene, Europhys. Lett.
104, 47002 (2013),
http://dx.doi.org/10.1209/0295-5075/104/47002
[278] A. Iorio, Using Weyl symmetry to make graphene a real lab
for fundamental physics,
http://arxiv.org/abs/1207.6929
[279] A. Iorio, Graphene: QFT in curved spacetimes close to
experiments, J. Phys. Conf. Ser.
442, 012056 (2013),
http://arxiv.org/abs/1207.6929,
http://dx.doi.org/10.1088/1742-6596/442/1/012056
[280] A. Iorio and G. Lambiase, The Hawking-Unruh phenomenon on
graphene,
http://arxiv.org/abs/1108.2340
[281] M. Cvetic and G.W. Gibbons, Graphene and the Zermelo
optical metric of the BTZ black hole,
http://arxiv.org/abs/1202.2938
[282] Pisin Chen and H.C. Rosu, Note on Hawking-Unruh effects in
graphene,
http://arxiv.org/abs/1205.4039
[283] A. Capolupo and G. Vitiello, Probing Hawking and Unruh
effects and quantum field theory in curved space by geometric
invariants,
http://arxiv.org/abs/1311.2892
[284] M.A. Zubkov and G.E. Volovik, Emergent gravity in
graphene,
http://arxiv.org/abs/1308.2249
[285] M.A.H. Vozmediano, M.I. Katsnelson, and F. Guinea, Gauge
fields in graphene, Phys. Rep.
496, 109 (2010),
http://dx.doi.org/10.1016/j.physrep.2010.07.003
[286] F. de Juan, A. Cortijo, and M.A.H. Vozmediano Dislocations
and torsion in graphene and related systems, Nucl. Phys. B
828,
625 (2010),
http://dx.doi.org/10.1016/j.nuclphysb.2009.11.012
[287] F. de Juan, A. Cortijo, M.A.H. Vozmediano, and A. Cano,
Aharonov-Bohm interferences from local deformations in graphene,
http://arxiv.org/abs/1105.0599
[288] M.I. Katsnelson, F. Guinea, and M.A.H. Vozmediano, Gauge
fields at the surface of topological insulators,
http://arxiv.org/abs/1105.6132
[289] A.L. Kitt, V.M. Pereira, A.K. Swan, and B.B. Goldberg,
Lattice-corrected strain-induced vector potentials in graphene,
Phys. Rev. B
85, 115432 (2012),
http://dx.doi.org/10.1103/PhysRevB.85.115432
[290] F. de Juan, M. Sturla, and M.A.H. Vozmediano, Space
dependent Fermi velocity in strained graphene, Phys. Rev. Lett.
108, 227205 (2012),
http://dx.doi.org/10.1103/PhysRevLett.108.227205
[291] F. de Juan, J.L. Mañes, and M.A.H. Vozmediano, Gauge
fields from strain in graphene, Phys. Rev. B
87, 165131
(2013),
http://dx.doi.org/10.1103/PhysRevB.87.165131
[292] M. Ramezani Masir, D. Moldovan, and F.M. Peeters, Pseudo
magnetic field in strained graphene: Revisited,
http://arxiv.org/abs/1304.0629
[293] M. Oliva-Leyva and G.G. Naumis, Understanding electron
behavior in strained graphene as a reciprocal space distortion,
http://arxiv.org/abs/1304.6682
[294] B. Reznik, Origin of the thermal radiation in a
solid-state analog of a black-hole,
http://arxiv.org/abs/gr-qc/9703076
[295] Wanli Lu, JunFeng Jin, Huanyang Chen, and Zhifang Lin, A
simple design of an artificial electromagnetic black hole,
http://arxiv.org/abs/1003.5727
[296] Miao Li, Rong-Xin Miao, and Yi Pang, Casimir energy,
holographic dark energy and electromagnetic metamaterial
mimicking de Sitter,
http://arxiv.org/abs/0910.3375
[297] Miao Li and Yi Pang, Holographic de Sitter universe,
http://arxiv.org/abs/1105.003
[298] Rong-Xin Miao, Rui Zheng, and Miao Li, Metamaterials
mimicking dynamic spacetime, D-brane and noncommutativity in
string theory,
http://arxiv.org/abs/1005.5585
[299] T.G. Mackay and A. Lakhtakia, Towards a realization of
Schwarzschild-(anti-)de Sitter spacetime as a particulate
metamaterial,
http://arxiv.org/abs/1102.1708
[300] T.G. Mackay and A. Lakhtakia, Towards a metamaterial
simulation of a spinning cosmic string,
http://arxiv.org/abs/0911.4163
[301] Tian-Ming Zhao and Rong-Xin Miao, Huge Casimir effect at
finite temperature in electromagnetic Rindler space,
http://arxiv.org/abs/1110.1919
[302] D. Brill, Black holes and wormholes in 2+1 dimensions,
http://arxiv.org/abs/gr-qc/9904083
[303] I.I. Smolyaninov, Yu-Ju Hung, and Ehren Hwang,
Experimental modeling of cosmological inflation with
metamaterials,
http://arxiv.org/abs/1111.3300
[304] I.I. Smolyaninov, Ehren Hwang, and E. Narimanov,
Hyperbolic metamaterial interfaces: Hawking radiation from
Rindler horizons and the “end of time”,
http://arxiv.org/abs/1107.4053
[305] I.I. Smolyaninov and E.E. Narimanov, Metric signature
transitions in optical metamaterials, Phys. Rev. Lett.
105,
067402 (2010),
http://dx.doi.org/10.1103/PhysRevLett.105.067402
[306] I.I. Smolyaninov, Metamaterial “multiverse”, J. Optics
13,
024004 (2011),
http://dx.doi.org/10.1088/2040-8978/13/2/024004
[307] I.I. Smolyaninov, Metamaterial model of tachyonic dark
energy,
http://arxiv.org/abs/1310.8155
[308] I.I. Smolyaninov, Analog of gravitational force in
hyperbolic metamaterials, Phys. Rev. A
88, 033843
(2013),
http://arxiv.org/abs/1307.8431,
http://dx.doi.org/10.1103/PhysRevA.88.033843
[309] I.I. Smolyaninov, Extra-dimensional metamaterials: simple
models of inflation and metric signature transitions,
http://arxiv.org/abs/1301.6060
[310] I.I. Smolyaninov, Modeling of causality with
metamaterials, J. Optics
15, 025101 (2013),
http://dx.doi.org/10.1088/2040-8978/15/2/025101
[311] I.I. Smolyaninov, Holographic duality in nonlinear
hyperbolic metamaterials,
http://arxiv.org/abs/1401.3242
[312] D.V. Khveshchenko, Contrasting string holography to its
optical namesake, Europhys. Lett.
109, 61001 (2015),
http://dx.doi.org/10.1209/0295-5075/109/61001
[313]
Artificial Black Holes, eds. M. Novello, M.
Visser, and G.E. Volovik (World Scientific, Singapore, 2002),
http://dx.doi.org/10.1142/4861
[314]
Quantum Analogues: From Phase Transitions to Black
Holes and Cosmology, eds. R. Schützhold and W.G. Unruh,
Lecture Notes in Physics Vol. 718 (Springer, 2007),
http://dx.doi.org/10.1007/3-540-70859-6
[315] C. Barceló, S. Liberati, and M. Visser, Analogue gravity,
Living Rev. Rel.
14, 3 (2011) [updated from Living Rev.
Rel.
8, 12 (2005)],
http://dx.doi.org/10.12942/lrr-2011-3
[316] M. Visser, Survey of analogue spacetimes, in:
Analogue
Gravity Phenomenology, eds. D. Faccio, F. Belgiorno, S.
Cacciatori, V. Gorini, S. Liberati, and U. Moschella, Lecture
Notes in Physics Vol. 870 (Springer, 2013) pp. 31–50,
http://dx.doi.org/10.1007/978-3-319-00266-8_2