[PDF]    http://dx.doi.org/10.3952/physics.v56i3.3363

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 125–148 (2016)

Review

DEMYSTIFYING THE HOLOGRAPHIC MYSTIQUE: A CRITICAL REVIEW
Dmitri V. Khveshchenko
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, USA
E-mail: khvesh@physics.unc.edu

Received 26 May 2016; accepted 21 June 2016

Thus far, in spite of many interesting developments, the overall progress towards a systematic study and classification of various ‘strange’ metallic states of matter has been rather limited. To that end, it was argued that a recent proliferation of the ideas of holographic correspondence originating from string theory might offer a possible way out of the stalemate. However, after almost a decade of intensive studies into the proposed extensions of the holographic conjecture to a variety of condensed matter problems, the validity of this intriguing approach remains largely unknown. This discussion aims at ascertaining its true status and elucidating the conditions under which some of its predictions may indeed be right (albeit, possibly, for a wrong reason).
Keywords: strongly correlated systems, holographic correspondence, transport theory, strange metals, analogue gravity
PACS: 71.27.+a

Apžvalga

HOLOGRAFIJOS TEORIJŲ DEMISTIFIKACIJA: KRITINĖ APŽVALGA

Dmitri V. Khveshchenko
Šiaurės Karolinos universitetas, JAV


References / Nuorodos

[1] J. Polchinski, Introduction to gauge/gravity duality,
http://arxiv.org/abs/1010.6134
[2] J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010, 723105 (2010),
http://dx.doi.org/10.1155/2010/723105
[3] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Classical Quant. Grav. 26, 224002 (2009),
http://dx.doi.org/10.1088/0264-9381/26/22/224002
[4] C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 343001 (2009),
http://dx.doi.org/10.1088/1751-8113/42/34/343001
[5] S. Sachdev, What can gauge-gravity duality teach us about condensed matter physics?, Annu. Rev. Cond. Matt. Phys. 3, 9 (2012),
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125141
[6] S. de Haro, D.R. Mayerson, and J. Butterfield, Conceptual aspects of gauge/gravity duality,
http://arxiv.org/abs/1509.09231
[7] M. Ammon and J. Erdmenger, Gauge/Gravity Duality: Foundations and Applications (Cambridge University Press, 2015),
http://dx.doi.org/10.1017/CBO9780511846373
[8] J. Zaanen, Yan Liu, Ya-Wen Sun, and K. Schalm, Holographic Duality in Condensed Matter Physics (Cambridge University Press, 2015),
http://dx.doi.org/10.1017/CBO9781139942492
[9] S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers, and R.M. Thomson, Holographic phase transitions at finite baryon density, J. High Energy Phys. 2007(02), 016 (2007),
http://arxiv.org/abs/hep-th/0611099,
http://dx.doi.org/10.1088/1126-6708/2007/02/016
[10] A. Karch and A. O'Bannon, Metallic AdS/CFT, J. High Energy Phys. 2007(09), 024 (2007),
http://arxiv.org/abs/0705.3870,
http://dx.doi.org/10.1088/1126-6708/2007/09/024
[11] S. Kachru, A. Karch, and S. Yaida, Holographic lattices, dimers and glasses, Phys. Rev. D 81, 026007 (2010),
http://arxiv.org/abs/0909.2639,
http://dx.doi.org/10.1103/PhysRevD.81.026007
[12] S.A. Hartnoll, J. Polchinski, E. Silverstein, and D. Tong, Towards strange metallic holography, J. High Energy Phys. 2010(04), 120 (2010),
http://arxiv.org/abs/0912.1061,
http://dx.doi.org/10.1007/JHEP04(2010)120
[13] S. Ryu, T. Takayanagi, and T. Ugajin, Holographic conductivity in disordered systems, J. High Energy Phys. 2011(04), 115 (2011),
http://arxiv.org/abs/1103.6068,
http://dx.doi.org/10.1007/JHEP04(2011)115
[14] Sung-Sik Lee, Quantum renormalization group and holography, J. High Energy Phys. 2014(01), 076 (2014),
http://dx.doi.org/10.1007/JHEP01(2014)076
[15] Sung-Sik Lee, Background independent holographic description: From matrix field theory to quantum gravity, J. High Energy Phys. 2012(10), 160 (2012),
http://dx.doi.org/10.1007/JHEP10(2012)160
[16] Sung-Sik Lee, Holographic description of large N gauge theory, Nucl. Phys. B 851, 143 (2011),
http://dx.doi.org/10.1016/j.nuclphysb.2011.05.011
[17] Sung-Sik Lee, Holographic description of quantum field theory, Nucl. Phys. B 832, 567 (2010),
http://dx.doi.org/10.1016/j.nuclphysb.2010.02.022
[18] P. Lunts, S. Bhattacharjee, J. Miller, E. Schnetter, Yong Baek Kim, and Sung-Sik Lee, Ab initio holography, J. High Energy Phys. 2015(08), 107 (2015),
http://dx.doi.org/10.1007/JHEP08(2015)107
[19] Ching Hua Lee and Xiao-Liang Qi, Exact holographic mapping in free fermion systems,
http://arxiv.org/abs/1503.08592
[20] M. Miyaji, T. Takayanagi, Surface/state correspondence as a generalized holography,
http://arxiv.org/abs/1503.03542
[21] Y. Nakayama, ac test of holography vs quantum renormalization group,
http://arxiv.org/abs/1401.5257
[22] S. Jackson, R. Pourhasan, and H. Verlinde, Geometric RG flow,
http://arxiv.org/abs/1312.6914
[23] E. Kiritsis, Wenliang Li, and F. Nitti, Holographic RG flow and the quantum effective action, Fortschr. Phys. 62(5–6), 389 (2014),
http://dx.doi.org/10.1002/prop.201400007
[24] Sung-Sik Lee, Horizon as critical phenomenon,
http://arxiv.org/abs/1603.08509
[25] S. Sachdev, Bekenstein-Hawking entropy and strange metals, Phys. Rev. X 5, 041025 (2015),
http://arxiv.org/abs/1506.05111,
http://dx.doi.org/10.1103/PhysRevX.5.041025
[26] Wenbo Fu and S. Sachdev, Numerical study of fermion and boson models with infinite-range random interactions,
http://arxiv.org/abs/1603.05246
[27] A. Kitaev [unpublished]
[28] A. Jevicki, K. Suzuki, and Junggi Yoon, Bi-Local Holography in the SYK Model,
http://arxiv.org/abs/1603.06246
[29] J. Maldacena and D. Stanford, Comments on the Sachdev-Ye-Kitaev model,
http://arxiv.org/abs/1604.07818
[30] W. Witczak-Krempa, E. Sorensen, and S. Sachdev, The dynamics of quantum criticality via Quantum Monte Carlo and holography, Nat. Phys. 10, 361 (2014),
http://dx.doi.org/10.1038/nphys2913
[31] W. Witczak-Krempa, Quantum critical charge response from higher derivatives: is more different?, Phys. Rev. B 89, 161114 (2014),
http://dx.doi.org/10.1103/PhysRevB.89.161114
[32] E. Katz, S. Sachdev, E.S. Sorensen, and W. Witczak-Krempa, Conformal field theories at non-zero temperature: operator product expansions, Monte Carlo, and holography,
http://arxiv.org/abs/1409.3841
[33] S. Bai and D.-W. Pang, Holographic charge transport in 2+1 dimensions at finite N,
http://arxiv.org/abs/1312.3351
[34] Kun Chen, Longxiang Liu, Youjin Deng, L. Pollet and N. Prokof'ev, Universal conductivity in a two-dimensional superfluid-to-insulator quantum critical system, Phys. Rev. Lett. 112, 030402 (2013),
http://dx.doi.org/10.1103/PhysRevLett.112.030402
[35] S.S. Lee, A non-Fermi liquid from a charged black hole: A critical Fermi ball, Phys. Rev. D 79, 086006 (2009),
http://dx.doi.org/10.1103/PhysRevD.79.086006
[36] H. Liu, J. McGreevy, and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83, 065029 (2011),
http://dx.doi.org/10.1103/PhysRevD.83.065029
[37] N. Iqbal and Hong Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57, 367 (2009),
http://dx.doi.org/10.1002/prop.200900057
[38] M. Cubrovic, J. Zaanen, and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325, 439 (2009),
http://dx.doi.org/10.1126/science.1174962
[39] T. Faulkner, Hong Liu, J. McGreevy, and D. Vegh, Emergent quantum criticality, Fermi surfaces, and AdS2, Phys. Rev. D 83, 125002 (2011),
http://dx.doi.org/10.1103/PhysRevD.83.125002
[40] N. Iqbal, Hong Liu, M. Mezei, and Q. Si, Quantum phase transitions in holographic models of magnetism and superconductors, Phys. Rev. D 82, 045002 (2010),
http://dx.doi.org/10.1103/PhysRevD.82.045002
[41] T. Faulkner and J. Polchinski, Semi-holographic Fermi liquids, J. High Energy Phys. 2011(06), 012 (2011),
http://dx.doi.org/10.1007/JHEP06(2011)012
[42] N. Iqbal, Hong Liu, and M. Mezei, Semi-local quantum liquids,
http://arxiv.org/abs/1105.4621
[43] N. Iqbal, Hong Liu, and M. Mezei, Quantum phase transitions in semi-local quantum liquids,
http://arxiv.org/abs/1108.0425
[44] R.G. Leigh, A.C. Petkou, and P.M. Petropoulos, Holographic three-dimensional fluids with nontrivial vorticity,
http://arxiv.org/abs/1108.1393
[45] Q. Si and F. Steglich, Heavy fermions and quantum phase transitions, Science 329, 1161 (2010),
http://dx.doi.org/10.1126/science.1191195
[46] D. Vollhardt, K. Byczuk, and M. Kollar, Dynamical mean-field theory, in: Strongly Correlated Systems, eds. A. Avella and F. Mancini, Springer Series in Solid-State Sciences Vol. 117 (Springer, 2011) pp. 203–236,
http://dx.doi.org/10.1007/978-3-642-21831-6_7
[47] S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105, 151602 (2010),
http://dx.doi.org/10.1103/PhysRevLett.105.151602
[48] L. Huijse and S. Sachdev, Fermi surfaces and gauge-gravity duality,
http://arxiv.org/abs/1104.5022
[49] S. Sachdev, A model of a Fermi liquid using gauge-gravity duality, Phys. Rev. D 84, 066009 (2011),
http://dx.doi.org/10.1103/PhysRevD.84.066009
[50] L. Huijse, S. Sachdev, and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality,
http://arxiv.org/abs/1112.0573
[51] B. Swingle, L. Huijse, and S. Sachdev, Entanglement entropy of compressible holographic matter: Loop corrections from bulk fermions,
http://arxiv.org/abs/1308.3234
[52] N. Ogawa, T. Takayanagi, and T. Ugajin, Holographic Fermi surfaces and entanglement entropy, J. High Energy Phys. 2012(01), 125 (2012),
http://dx.doi.org/10.1007/JHEP01(2012)125
[53] B. Swingle, Entanglement renormalization and holography,
http://arxiv.org/abs/0905.1317
[54] B. Swingle, Constructing holographic spacetimes using entanglement renormalization,
http://arxiv.org/abs/1209.3304
[55] S. Kachru, X. Liu, and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78, 106005 (2008),
http://dx.doi.org/10.1103/PhysRevD.78.106005
[56] N. Iizuka, N. Kundu, P. Narayan, and S.P. Trivedi, Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity,
http://arxiv.org/abs/1105.1162
[57] C. Charmousis, B. Goutéraux, B.S. Kim, E. Kiritsis, and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, J. High Energy Phys. 2010(11), 151 (2010),
http://dx.doi.org/10.1007/JHEP11(2010)151
[58] B. Goutéraux, J. Smolic, M. Smolic, K. Skenderis, and M. Taylor, Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction, J. High Energy Phys. 2012(01), 089 (2012),
http://dx.doi.org/10.1007/JHEP01(2012)089
[59] B. Goutéraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, J. High Energy Phys. 2011(12), 036 (2011),
http://dx.doi.org/10.1007/JHEP12(2011)036
[60] X. Dong, S. Harrison, S. Kachru, G. Torroba, and H. Wang, Aspects of holography for theories with hyperscaling violation,
http://arxiv.org/abs/1201.1905
[61] E. Perlmutter, Hyperscaling violation from supergravity,
http://arxiv.org/abs/1205.0242
[62] S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev. D 83, 046003 (2011),
http://dx.doi.org/10.1103/PhysRevD.83.046003
[63] S.A. Hartnoll, D.M. Hofman, and D. Vegh, Stellar spectroscopy: Fermions and holographic Lifshitz criticality,
http://arxiv.org/abs/1105.3197
[64] S. Sachdev, A model of a Fermi liquid using gauge-gravity duality, Phys. Rev. D 84, 066009 (2011),
http://dx.doi.org/10.1103/PhysRevD.84.066009
[65] G.T. Horowitz, J.E. Santos, and D. Tong, Optical conductivity with holographic lattices,
http://arxiv.org/abs/1204.0519
[66] G.T. Horowitz, J.E. Santos, and D. Tong, Further evidence for lattice-induced scaling,
http://arxiv.org/abs/1209.1098
[67] Yi Ling, Chao Niu, Jian-Pin Wu, and Zhuo-Yu Xian, Holographic lattice in Einstein-Maxwell-dilaton gravity, J. High Energy Phys. 2013(11), 006 (2013),
http://arxiv.org/abs/1309.4580,
http://dx.doi.org/10.1007/JHEP11(2013)006
[68] D. Vegh, Holography without translational symmetry,
http://arxiv.org/abs/1301.0537
[69] D.N. Basov, R.D. Averitt, D. van der Marel, M. Dressel, and K. Haule, Electrodynamics of correlated electron materials, Rev. Mod. Phys. 83, 471 (2011),
http://dx.doi.org/10.1103/RevModPhys.83.471
[70] A. Donos and J.P. Gauntlett, Holographic Q-lattices,
http://arxiv.org/abs/1311.3292
[71] Keun-Young Kim, Kyung Kiu Kim, Yunseok Seo, and Sang-Jin Sin, Coherent/incoherent metal transition in a holographic model,
http://arxiv.org/abs/1409.8346
[72] B.W. Langley, G. Vanacore, and P.W. Phillips, Absence of power-law mid-infrared conductivity in gravitational crystals, J. High Energy Phys. 2015(10), 163 (2015),
http://dx.doi.org/10.1007/JHEP10(2015)163
[73] J. Erdmenger, P. Kerner, and S. Müller, Towards a holographic realization of Homes’ law, J. High Energy Phys. 2012((10), 021 (2012),
http://dx.doi.org/10.1007/JHEP10(2012)021
[74] J. Erdmenger, B. Herwerth, S. Klug, R. Meyer, and K. Schalm, S-wave superconductivity in anisotropic holographic insulators,
http://arxiv.org/abs/1501.07615
[75] C.C. Homes, S.V. Dordevic, M. Strongin, D.A. Bonn, Ruixing Liang, W.N. Hardy, S. Koymia, Y. Ando, G. Yu, X. Zhao, M. Greven, D.N. Basov, and T. Timusk, A universal scaling relation in high-temperature superconductors, Nature (London) 430(6999), 539 (2004),
http://dx.doi.org/10.1038/nature02673
[76] V.G. Kogan, Homes scaling and BCS, Phys. Rev. B 87, 220507(R) (2013),
http://dx.doi.org/10.1103/PhysRevB.87.220507
[77] T. Schneider and H. Keller, Extreme type II superconductors: Universal trends, Phys. B Condens. Matter 194–196, 1789 (1994),
http://dx.doi.org/10.1016/0921-4526(94)91394-3
[78] Keun-Young Kim, Kyung Kiu Kim, and Miok Park, Ward identity and Homes' law in a holographic superconductor with momentum relaxation,
http://arxiv.org/abs/1604.06205
[79] E. Kiritsis and Li Li, Holographic competition of phases and superconductivity,
http://arxiv.org/abs/1510.00020
[80] Jiunn-Wei Chen, Shou-Huang Dai, D. Maity, and Yun-Long Zhang, Engineering holographic superconductor phase diagrams,
http://arxiv.org/abs/1603.08259
[81] J.D. Rameau, T.J. Reber, H.-B. Yang, S. Akhanjee, G.D. Gu, S. Campbell, and P.D. Johnson, Nearly perfect fluidity in a high temperature superconductor, Phys. Rev. B 90, 134509 (2014),
http://dx.doi.org/10.1103/PhysRevB.90.134509
[82] P. Kovtun, D.T. Son, and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94, 111601 (2005),
http://dx.doi.org/10.1103/PhysRevLett.94.111601
[83] D.T. Son and A.O. Starinets Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications,
http://arxiv.org/abs/hep-th/0205051
[84] A. Rebhan and D. Steineder, Violation of the holographic viscosity bound in a strongly coupled anisotropic plasma,
http://arxiv.org/abs/1110.6825
[85] K.A. Mamo, Holographic RG flow of the shear viscosity to entropy density ratio in strongly coupled anisotropic plasma, J. High Energy Phys. 2012(10), 070 (2012),
http://dx.doi.org/10.1007/JHEP10(2012)070
[86] R.C. Myers, T. Sierens, and W. Witczak-Krempa A holographic model for quantum critical responses,
http://arxiv.org/abs/1602.05599
[87] S. Sachdev and Jinwu Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339 (1993),
http://dx.doi.org/10.1103/PhysRevLett.70.3339
[88] A. Georges, O. Parcollet, and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B 63, 4406 (2001),
http://dx.doi.org/10.1103/PhysRevB.63.134406
[89] A. Georges, O. Parcollet, and S. Sachdev, Mean field theory of a quantum Heisenberg spin glass, Phys. Rev. Lett. 85, 840 (2000),
http://dx.doi.org/10.1103/PhysRevLett.85.840
[90] D. Anninos, S.A. Hartnoll, L. Huijse, and V.L. Martin, Large N matrices from a nonlocal spin system,
http://arxiv.org/abs/1412.1092
[91] L.F. Cugliandolo, J. Kurchan, G. Parisi, and F. Ritort, Matrix models as solvable glass models Phys. Rev. Lett. 74, 1012C (1995),
http://dx.doi.org/10.1103/PhysRevLett.74.1012
[92] M. Masuku, M. Mulokwe, and J.P. Rodrigues, Large N matrix hyperspheres and the gauge-gravity correspondence,
http://arxiv.org/abs/1411.5786
[93] S. Sachdev, Strange metals and the AdS/CFT correspondence, J. Stat. Mech. 1011, P11022 (2010),
http://dx.doi.org/10.1088/1742-5468/2010/11/p11022
[94] J.M. Magan, Black holes as random particles: entanglement dynamics in infinite range and matrix models,
http://arxiv.org/abs/1601.04663
[95] C. Bonfield, T. Wartz, J. Schirmer, and D.V. Khveshchenko [in progress]
[96] L.A. Takhtajan, The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins, Phys. Lett. A 87, 479 (1982),
http://dx.doi.org/10.1016/0375-9601(82)90764-2
[97] H.M. Babujian, Exact solution of the isotropic Heisenberg chain with arbitrary spins: Thermodynamics of the model, Nucl. Phys. B 215, 317B (1983),
http://dx.doi.org/10.1016/0550-3213(83)90668-5
[98] H.M. Babujian, Exact solution of the one-dimensional isotropic Heisenberg chain with arbitrary spins S, Phys. Lett. A 90, 479 (1982),
http://dx.doi.org/10.1016/0375-9601(82)90403-0
[99] A. Shnirman and Yu. Makhlin, Spin-spin correlators in Majorana representation, Phys. Rev. Lett. 91, 207204 (2003),
http://dx.doi.org/10.1103/PhysRevLett.91.207204
[100] R.S. Whitney, Yu. Makhlin, A. Shnirman, and Y. Gefen, Geometric nature of the environment-induced Berry phase and geometric dephasing, Phys. Rev. Lett. 94, 070407 (2005),
http://dx.doi.org/10.1103/PhysRevLett.94.070407
[101] P. Schad, A. Shnirman, and Yu. Makhlin, Using Majorana spin-1/2 representation for the spin-boson model
http://arxiv.org/abs/1504.05094
[102] P. Schad, Yu. Makhlin, B.N. Narozhny, G. Schön, and A. Shnirman, Majorana representation for dissipative spin systems, Annals Phys. 361, 401 (2015),
http://dx.doi.org/10.1016/j.aop.2015.07.006
[103] P. Benincasa and A.V. Ramallo, Holographic Kondo model in various dimensions, J. High Energy Phys. 2012(06), 133 (2012),
http://dx.doi.org/10.1007/JHEP06(2012)133
[104] S. Harrison, Sh. Kachru, and G. Torroba, A maximally supersymmetric Kondo model,
http://arxiv.org/abs/1110.5325
[105] J. Erdmenger, C. Hoyos, A. O'Bannon, and Jackson Wu, A holographic model of the Kondo effect, J. High Energy Phys. 2013(12), 086 (2013),
http://arxiv.org/abs/1310.3271,
http://dx.doi.org/10.1007/JHEP12(2013)086
[106] J. Erdmenger, M. Flory, and M.-N. Newrzella, Bending branes for DCFT in two dimensions,
http://arxiv.org/abs/1410.7811
[107] J. Erdmenger, M. Flory, C. Hoyos, M.-N. Newrzella, and Jackson M.S. Wu, Entanglement entropy in a holographic Kondo model,
http://arxiv.org/abs/1511.03666
[108] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence, Phys. Rev. Lett. 96, 181602 (2006),
http://arxiv.org/abs/hep-th/0603001,
http://dx.doi.org/10.1103/PhysRevLett.96.181602
[109] T. Takayanagi, Holographic dual of a boundary conformal field theory, Phys. Rev. Lett 107, 101602 (2011),
http://dx.doi.org/10.1103/PhysRevLett.107.101602
[110] H. Matsueda, Emergent general relativity from Fisher information metric,
http://arxiv.org/abs/1310.1831
[111] S.A. Hosseini Mansoori, B. Mirza, and M. Fazel, Hessian matrix, specific heats, Nambu brackets, and thermodynamic geometry, J. High Energy Phys. 2015(04), 115 (2015),
http://dx.doi.org/10.1007/JHEP04(2015)115
[112] Bo-Bo Wei, Zhan-Feng Jiang, and Ren-Bao Liu, Thermodynamic holography,
http://arxiv.org/abs/1411.6342
[113] P. Kumar and T. Sarkar, Geometric critical exponents in classical and quantum phase transitions, Phys. Rev. E 90, 042145 (2014),
http://dx.doi.org/10.1103/PhysRevE.90.042145
[114] J. Molina-Vilaplana, Information geometry of entanglement renormalization for free quantum fields, J. High Energy Phys. 2015(09), 002 (2015),
http://dx.doi.org/10.1007/JHEP09(2015)002
[115] Y. Hashizume and H. Matsueda, Information geometry for Husimi-Temperley model,
http://arxiv.org/abs/1407.2667
[116] Xiao-Liang Qi, Exact holographic mapping and emergent space-time geometry,
http://arxiv.org/abs/1309.6282
[117] Wei Li and T. Takayanagi, Holography and entanglement in flat spacetime, Phys. Rev. Lett. 106, 141301 (2011),
http://dx.doi.org/10.1103/PhysRevLett.106.141301
[118] Xing Huang and Feng-Li Lin, Entanglement renormalization and integral geometry,
http://arxiv.org/abs/1507.04633
[119] M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi, and K. Watanabe, Gravity dual of quantum information metric,
http://arxiv.org/abs/1507.07555
[120] D. Sels and M. Wouters, Quantum statistical gravity: tTime dilation due to local information in many-body quantum systems,
http://arxiv.org/abs/1602.05707
[121] Bo Yang, Z. Papic, E.H. Rezayi, R.N. Bhatt, and F.D.M. Haldane, Band mass anisotropy and the intrinsic metric of fractional quantum Hall systems, Phys. Rev. B 85, 165318 (2012),
http://dx.doi.org/10.1103/PhysRevB.85.165318
[122] A. Ghazaryan and T. Chakraborty, Emergent geometry fluctuation in quantum confined electron systems,
http://arxiv.org/abs/1403.6485
[123] R.R. Biswas, Semiclassical theory of viscosity in quantum Hall states,
http://arxiv.org/abs/1311.7149
[124] T. Neupert, C. Chamon, and C. Mudry, How to measure the quantum geometry of Bloch bands, Phys. Rev. B 87, 245103 (2013),
http://arxiv.org/abs/1303.4643,
http://dx.doi.org/10.1103/PhysRevB.87.245103
[125] S. Matsuura and S. Ryu, Momentum space metric, non-local operator, and topological insulators, Phys. Rev. B 82, 245113,
http://dx.doi.org/10.1103/PhysRevB.82.245113
[126] D. Bauer, T.S. Jackson, and R. Roy, Quantum geometry and stability of the fractional quantum Hall effect in the Hofstadter model,
http://arxiv.org/abs/1504.07185
[127] J.M. Hickey, S. Genway, and J.P. Garrahan, Dynamical phase transitions, time-integrated observables and geometry of states, Phys. Rev. B 89, 054301 (2014),
http://dx.doi.org/10.1103/PhysRevB.89.054301
[128] M. Kolodrubetz, V. Gritsev, and A. Polkovnikov, Classifying and measuring the geometry of the quantum ground state manifold, Phys. Rev. B 88, 064304 (2013),
http://dx.doi.org/10.1103/PhysRevB.88.064304
[129] A. Mollabashi, M. Nozaki, S. Ryu, and T. Takayanagi, Holographic geometry of cMERA for quantum quenches and finite temperature, J. High Energy Phys. 2014(03), 098 (2014),
http://dx.doi.org/10.1007/JHEP03(2014)098
[130] D.V. Khveshchenko, Taking a critical look at holographic critical matter, Lith. J. Phys. 56, 208 (2015),
http://dx.doi.org/10.3952/physics.v55i3.3150
[131] J.M. Harris, Y.F. Yan, P. Matl, N.P. Ong, P.W. Anderson, T. Kimura, and K. Kitazawa, Violation of Kohler's rule in the normal-state magnetoresistance of YBa2Cu3O7–δ and La2SrxCuO4, Phys. Rev. Lett. 75, 1391 (1995),
http://dx.doi.org/10.1103/PhysRevLett.75.1391
[132] P.W. Anderson, Hall effect in the two-dimensional Luttinger liquid, Phys. Rev. Lett. 67, 2092 (1991),
http://dx.doi.org/10.1103/PhysRevLett.67.2092
[133] P. Coleman, A.J. Schofield, and A.M. Tsvelik, Phenomenological transport equation for the cuprate metals, Phys. Rev. Lett. 76, 1324 (1996),
http://dx.doi.org/10.1103/PhysRevLett.76.1324
[134] C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A.E. Ruckenstein, Phenomenology of the normal state of Cu-O high-temperature superconductors, Phys. Rev. Lett. 64, 497 (1990),
http://dx.doi.org/10.1103/PhysRevLett.64.497
[135] J.W. Loram, K.A. Mirza, J.M. Wade, J.R. Cooper, and W.Y. Liang, The electronic specific heat of cuprate superconductors, Physica C 235–240, 134 (1994),
http://dx.doi.org/10.1016/0921-4534(94)91331-5
[136] A. Karch, Conductivities for hyperscaling violating geometries, J. High Energy Phys. 2014(06), 140 (2014),
http://dx.doi.org/10.1007/JHEP06(2014)140
[137] S.A. Hartnoll and A. Karch, Scaling theory of the cuprate strange metals, Phys. Rev. B 91, 155126 (2015),
http://dx.doi.org/10.1103/PhysRevB.91.155126
[138] D.V. Khveshchenko, Viable phenomenologies of the normal state of cuprates, Europhys. Lett. 111, 17005 (2015),
http://dx.doi.org/10.1209/0295-5075/111/17003
[139] A.V. Chubukov, D.L. Maslov, and V.I. Yudson, Optical conductivity of a two-dimensional metal at the onset of spin-density-wave order,
http://arxiv.org/abs/1401.1461
[140] D.L. Maslov, V.I. Yudson, and A.V. Chubukov, Resistivity of a non-Galilean–invariant Fermi liquid near Pomeranchuk quantum criticality, Phys. Rev. Lett. 106, 106403 (2011),
http://dx.doi.org/10.1103/PhysRevLett.106.106403
[141] H.K. Pal, V.I. Yudson, and D.L. Maslov, Resistivity of non-Galilean-invariant Fermi- and non-Fermi liquids, Lith. J. Phys. 52, 142 (2012),
http://dx.doi.org/10.3952/physics.v52i2.2358
[142] Mu-Yong Choi and J.S. Kim, Thermopower of high-Tc cuprates, Phys. Rev. B 59, 000192 (1999),
http://dx.doi.org/10.1103/PhysRevB.59.192
[143] Y. Zhang, N.P. Ong, P.W. Anderson, D.A. Bonn, R. Liang, and W.N. Hardy, Determining the Wiedemann-Franz ratio from the thermal Hall conductivity: Application to Cu and YBa2Cu3O6.95, Phys. Rev. Lett. 84, 2219 (2000),
http://dx.doi.org/10.1103/PhysRevLett.84.2219
[144] Y. Wang, L. Li, and N.P. Ong, The Nernst effect in high-Tc superconductors, Phys. Rev. B 73, 024510 (2006),
http://dx.doi.org/10.1103/PhysRevB.73.024510
[145] M. Matusiak and Th. Wolf, Lorenz number in the optimally doped and underdoped superconductor EuBa2Cu3Oy, Phys. Rev. B 72, 054508 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.054508
[146] M. Matusiak, J. Hori, and T. Suzuki, The Hall-Lorenz number in the La1.855Sr0.145CuO4 single crystal, Solid State Comm. 139, 376 (2006),
http://dx.doi.org/10.1016/j.ssc.2006.06.024
[147] M. Matusiak, K. Rogacki, and B.W. Veal, Enhancement of the Hall-Lorenz number in optimally doped YBa2Cu3O7–d, Europhys. Lett. 88, 47005 (2009),
http://dx.doi.org/10.1209/0295-5075/88/47005
[148] B. Goutéraux, Universal scaling properties of extremal cohesive holographic phases, J. High Energy Phys. 2014(01), 080 (2014),
http://dx.doi.org/10.1007/JHEP01(2014)080
[149] B. Goutéraux, Charge transport in holography with momentum dissipation, J. High Energy Phys. 2014(04), 181 (2014),
http://dx.doi.org/10.1007/JHEP04(2014)181
[150] N. Barisic, M.K. Chan, M.J. Veit, C.J. Dorow, Y. Ge, Y. Tang, W. Tabis, G. Yu, X. Zhao, and M. Greven, Hidden Fermi-liquid behavior throughout the phase diagram of the cuprates,
http://arxiv.org/abs/1507.07885
[151] G. Grissonnanche, F. Laliberte, S. Dufour-Beausejour, M. Matusiak, S. Badoux, F.F. Tafti, B. Michon, A. Riopel, O. Cyr-Choiniere, J.C. Baglo, B.J. Ramshaw, R. Liang, D.A. Bonn, W.N. Hardy, S. Kramer, D. LeBoeuf, D. Graf, N. Doiron-Leyraud, and L. Taillefer, Wiedemann-Franz law in the underdoped cuprate superconductor YBa2Cu3Oy,
http://arxiv.org/abs/1503.07572
[152] G. Grissonnanche, F. Laliberte, S. Dufour-Beausejour, A. Riopel, S. Badoux, M. Caouette-Mansour, M. Matusiak, A. Juneau-Fecteau, P. Bourgeois-Hope, O. Cyr-Choiniere, J.C. Baglo, B.J. Ramshaw, R. Liang, D.A. Bonn, W.N. Hardy, S. Kramer, D. LeBoeuf, D. Graf, N. Doiron-Leyraud, and L. Taillefer, Onset field for Fermi-surface reconstruction in the cuprate superconductor YBCO,
http://arxiv.org/abs/1508.05486
[153] A. Karch, Multiband models for field theories with anomalous current dimension,
http://arxiv.org/abs/1504.02478
[154] A. Karch, K. Limtragool, and P.W. Phillips, Unparticles and anomalous dimensions in the cuprates,
http://arxiv.org/abs/1511.02868
[155] K. Limtragool and P.W. Phillips, Anomalous dimension of the electrical current in the normal state of the cuprates from the fractional Aharonov-Bohm effect,
http://arxiv.org/abs/1601.02340
[156] A. Amoretti, M. Baggioli, N. Magnoli, and D. Musso, Chasing the cuprates with dilatonic dyons,
http://arxiv.org/abs/1603.03029
[157] E. Abrahams, J. Schmalian, and P. Wölfle, Strong coupling theory of heavy fermion criticality, Phys. Rev. B 90, 045105 (2014),
http://dx.doi.org/10.1103/PhysRevB.90.045105
[158] M. Vojta, R. Bulla, and P. Wölfle, Critical quasiparticles in single-impurity and Kondo lattice models, Eur. Phys. J. Special Topics 224, 1127 (2015),
http://dx.doi.org/10.1140/epjst/e2015-02449-0
[159] P. Wölfle and E. Abrahams, Spin-flip scattering of critical quasiparticles and the phase diagram of YbRh2Si2, Phys. Rev. B 92, 155111 (2015),
http://arxiv.org/abs/1506.08476,
http://dx.doi.org/10.1103/PhysRevB.92.155111
[160] T.R. Kirkpatrick and D. Belitz, Pre-asymptotic critical behavior and effective exponents in disordered metallic quantum ferromagnets, Phys. Rev. Lett. 113, 127203 (2014),
http://dx.doi.org/10.1103/PhysRevLett.113.127203
[161] T.R. Kirkpatrick and D. Belitz, Exponent relations at quantum phase transitions, with applications to metallic quantum ferromagnets, Phys. Rev. B 91, 214407 (2015),
http://dx.doi.org/10.1103/PhysRevB.91.214407
[162] T.R. Kirkpatrick and D. Belitz, Quantum correlations in metals that grow in time and space, Phys. Rev. B 93, 125130 (2016),
http://arxiv.org/abs/1508.01830,
http://dx.doi.org/10.1103/PhysRevB.93.125130
[163] S.A. Maier and P. Strack, Universality in antiferromagnetic strange metals,
http://arxiv.org/abs/1510.01331
[164] P. Kovtun and A. Ritz, Universal conductivity and central charges, Phys. Rev. D 78, 066009 (2008),
http://dx.doi.org/10.1103/PhysRevD.78.066009
[165] P.M. Hogan and A.G. Green, Universal non-linear conductivity near to an itinerant-electron ferromagnetic quantum critical point, Phys. Rev. B 78, 195104 (2008),
http://dx.doi.org/10.1103/PhysRevB.78.195104
[166] N. Iqbal and Hong Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79, 025023 (2009),
http://arxiv.org/abs/0809.3808,
http://dx.doi.org/10.1103/PhysRevD.79.025023
[167] S. Jain, Universal thermal and electrical conductivity from holography, J. High Energy Phys. 2010(11), 092 (2010),
http://dx.doi.org/10.1007/JHEP11(2010)092
[168] S. Jain, Universal properties of thermal and electrical conductivity of gauge theory plasma from holography, J. High Energy Phys. 2010(06), 023 (2010),
http://dx.doi.org/10.1007/JHEP06(2010)023
[169] S. Jain, Holographic electrical and thermal conductivity in strongly coupled gauge theory with multiple chemical potentials, J. High Energy Phys. 2010(03), 101 (2010),
http://dx.doi.org/10.1007/JHEP03(2010)101
[170] T. Faulkner, N. Iqbal, Hong Liu, J. McGreevy, and D. Vegh, Charge transport by holographic Fermi surfaces, Phys. Rev. D 8, 045016 (2013),
http://dx.doi.org/10.1103/PhysRevD.88.045016
[171] S.A. Hartnoll and D.M. Hofman, Locally critical umklapp scattering and holography, Phys. Rev. Lett. 108, 241601 (2012),
http://dx.doi.org/10.1103/PhysRevLett.108.241601
[172] A. Donos and S.A. Hartnoll, Metal-insulator transition in holography, Nat. Phys. 9, 649 (2013),
http://dx.doi.org/10.1038/nphys2701
[173] A. Donos and S.A. Hartnoll, Universal linear in emperature resistivity from black hole superradiance, Phys. Rev. D 86, 124046 (2012),
http://dx.doi.org/10.1103/PhysRevD.86.124046
[174] K. Balasubramanian and C.P. Herzog, Losing forward momentum holographically,
http://arxiv.org/abs/1312.4953
[175] S.A. Hartnoll and J.E. Santos, Disordered horizons: Holography of randomly disordered fixed points,
http://arxiv.org/abs/1402.0872
[176] J.-R. Sun, S.-Y. Wu, and H.-Q. Zhang, Mimic the optical conductivity in disordered solids via gauge/gravity duality, Phys. Lett. B 729, 177 (2014),
http://dx.doi.org/10.1016/j.physletb.2014.01.005
[177] A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, J. High Energy Phys. 2014(06), 007 (2014),
http://arxiv.org/abs/1401.5077,
http://dx.doi.org/10.1007/JHEP06(2014)007
[178] M. Blake and D. Tong, Universal resistivity from holographic massive gravity, Phys. Rev. D 88, 106004 (2013),
http://dx.doi.org/10.1103/PhysRevD.88.106004
[179] T. Andrade and B. Withers, A simple holographic model of momentum relaxation,
http://arxiv.org/abs/1311.5157
[180] M. Blake, D. Tong, and D. Vegh, Holographic lattices give the graviton a mass, Phys. Rev. Lett. 112, 071602 (2014),
http://dx.doi.org/10.1103/PhysRevLett.112.071602
[181] M. Blake and A. Donos, Quantum critical transport and the Hall angle,
http://arxiv.org/abs/1406.1659
[182] S.A. Hartnoll,Theory of universal incoherent metallic transport,
http://arxiv.org/abs/1405.3651
[183] A. Amoretti, A. Braggio, N. Magnoli, and D. Musso, Bounds on charge and heat diffusivities in momentum dissipating holography, J. High Energy Phys. 2015(07), 102 (2015),
http://dx.doi.org/10.1007/JHEP07(2015)102
[184] M. Baggioli and O. Pujolas, Holographic polarons, the metal-insulator transition and massive gravity, Phys. Rev. Lett. 114, 251602 (2015),
http://dx.doi.org/10.1103/PhysRevLett.114.251602
[185] G. Gur-Ari, S.A. Hartnoll, and R. Mahajan, Transport in Chern-Simons-matter theories,
http://arxiv.org/abs/1605.01122
[186] E. Banks, A. Donos, and J.P. Gauntlett, Thermoelectric DC conductivities and Stokes flows on black hole horizons, J. High Energy Phys. 2015(10), 103 (2015),
http://arxiv.org/abs/1507.00234,
http://dx.doi.org/10.1007/JHEP10(2015)103
[187] A. Donos and J.P. Gauntlett, The thermoelectric properties of inhomogeneous holographic lattices, J. High Energy Phys. 2015(01), 035 (2015),
http://arxiv.org/abs/1409.6875,
http://dx.doi.org/10.1007/JHEP01(2015)035
[188] A. Donos and J.P. Gauntlett, Navier-Stokes equations on black hole horizons and DC thermoelectric conductivity, Phys. Rev. D 92, 121901 (2015),
http://arxiv.org/abs/1506.01360,
http://dx.doi.org/10.1103/PhysRevD.92.121901
[189] A. Donos, J.P. Gauntlett, T. Griffin, and L. Melgar, DC conductivity of magnetised holographic matter, J. High Energy Phys. 2016(01), 113 (2016),
http://arxiv.org/abs/1511.00713,
http://dx.doi.org/10.1007/JHEP01(2016)113
[190] S. Bhattacharyya, V.E. Hubeny, S. Minwalla, and M. Rangamani, Nonlinear fluid dynamics from gravity, J. High Energy Phys. 2008(02), 045 (2008),
http://arxiv.org/abs/0712.2456
[191] M. Rangamani, Gravity and hydrodynamics: Lectures on the fluid-gravity correspondence, Classical Quant. Grav. 26, 224003 (2009),
http://dx.doi.org/10.1088/0264-9381/26/22/224003
[192] V.E. Hubeny, The fluid/gravity correspondence: A new perspective on the membrane paradigm, Classical Quant. Grav. 28, 114007 (2011),
http://dx.doi.org/10.1088/0264-9381/28/11/114007
[193] V.E. Hubeny, S. Minwalla, and M. Rangamani, The fluid/gravity correspondence, in: Black Holes in Higher Dimensions, ed. G.T. Horowitz (Cambridge, Cambridge University Press, 2012),
http://dx.doi.org/10.1017/CBO9781139004176.014
[194] R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D 88, 086003 (2013),
http://dx.doi.org/10.1103/PhysRevD.88.086003
[195] R.A. Davison, B. Goutéraux, and S.A. Hartnoll, Incoherent transport in clean quantum critical metals,
http://arxiv.org/abs/1507.07137
[196] M. Blake, Momentum relaxation from the fluid/gravity correspondence, J. High Energy Phys. 2015(09), 010 (2015),
http://dx.doi.org/10.1007/JHEP09(2015)010
[197] M. Blake, Universal charge diffusion and the butterfly effect,
http://arxiv.org/abs/1603.08510
[198] M. Blake, Universal diffusion in incoherent black holes,
http://arxiv.org/abs/1604.01754
[199] R.A. Davison and B. Goutéraux, Dissecting holographic conductivities, J. High Energy Phys. 2015(09), 090 (2015),
http://dx.doi.org/10.1007/JHEP09(2015)090
[200] R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, J. High Energy Phys. 2015(01), 039 (2015),
http://dx.doi.org/10.1007/JHEP01(2015)039
[201] A. Lucas, S. Sachdev, and K. Schalm, Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder,
http://arxiv.org/abs/1401.7993
[202] S.A. Hartnoll, R. Mahajan, M. Punk, and S. Sachdev, Transport near the Ising-nematic quantum critical point of metals in two dimensions,
http://arxiv.org/abs/1401.7012
[203] A. Eberlein, I. Mandal, and S. Sachdev, Hyperscaling violation at the Ising-nematic quantum critical point in two dimensional metals,
http://arxiv.org/abs/1605.00657
[204] J. Zaanen, Superconductivity: Why the temperature is high, Nature (London) 430(6999), 512 (2004),
http://dx.doi.org/10.1038/430512a
[205] R.A. Davison, K. Schalm, and J. Zaanen, Holographic duality and the resistivity of strange metals, Phys. Rev. B 89, 245116 (2014),
http://dx.doi.org/10.1103/PhysRevB.89.245116
[206] D.V. Khveshchenko, Searching for non-Fermi liquids under holographic light, Phys. Rev. B 86, 115115 (2012),
http://dx.doi.org/10.1103/PhysRevB.86.115115
[207] Da-Wei Pang, Probing holographic semilocal quantum liquids with D-branes, Phys. Rev. D 88, 046002 (2013),
http://dx.doi.org/10.1103/PhysRevD.88.046002
[208] M. Edalati and J.F. Pedraza, Aspects of current correlators in holographic theories with hyperscaling violation, Phys. Rev. D 88, 086004 (2013),
http://dx.doi.org/10.1103/PhysRevD.88.086004
[209] P. Dey and S. Roy, Zero sound in strange metals with hyperscaling violation from holography,
http://arxiv.org/abs/1307.0195
[210] S.A. Hartnoll, P.K. Kovtun, M. Mueller, and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes, Phys. Rev. B 76, 144502 (2007),
http://dx.doi.org/10.1103/PhysRevB.76.144502
[211] Keun-Young Kim, Kyung Kiu Kim, Yunseok Seo, and Sang-Jin Sin, Thermoelectric conductivities at finite magnetic field and the Nernst effect,
http://arxiv.org/abs/1502.05386
[212] K. Landsteiner, Yan Liu, and Ya-Wen Sun, Negative magnetoresistivity in chiral fluids and holography,
http://arxiv.org/abs/1410.6399
[213] M. Blake, A. Donos, and N. Lohitsiri, Magnetothermoelectric response from holography, J. High Energy Phys. 2015(08), 124 (2015),
http://dx.doi.org/10.1007/JHEP08(2015)124
[214] A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli, and D. Musso, Analytic DC thermo-electric conductivities in holography with massive gravitons, Phys. Rev. D 91, 025002 (2015),
http://dx.doi.org/10.1103/PhysRevD.91.025002
[215] A. Amoretti and D. Musso, Magneto-transport from momentum dissipating holography,
http://arxiv.org/abs/1502.02631
[216] H. Bantilan, J.T. Brewer, T. Ishii, W.E. Lewis, and P. Romatschke, String theory based predictions for novel collective modes in strongly interacting Fermi gases,
http://arxiv.org/abs/1605.00014
[217] S. Grozdanov, N. Kaplis, and A.O. Starinets, From strong to weak coupling in holographic models of thermalization,
http://arxiv.org/abs/1605.02173
[218] P. Jung and A. Rosch, Lower bounds for the conductivities of correlated quantum systems, Phys. Rev. B 75, 245104 (2007),
http://dx.doi.org/10.1103/PhysRevB.75.245104
[219] A. Lucas and S. Sachdev, Conductivity of weakly disordered strange metals: From conformal to hyperscaling-violating regimes, Nucl. Phys. B 892, 239 (2015),
http://dx.doi.org/10.1016/j.nuclphysb.2015.01.017
[220] A. Lucas, Conductivity of a strange metal: From holography to memory functions, J. High Energy Phys. 2015(03), 071 (2015),
http://dx.doi.org/10.1007/JHEP03(2015)071
[221] A. Lucas and S. Sachdev, Memory matrix theory of magnetotransport in strange metals, Phys. Rev. B 91, 195122 (2015),
http://dx.doi.org/10.1103/PhysRevB.91.195122
[222] A. Lucas, Hydrodynamic transport in strongly coupled disordered quantum field theories,
http://arxiv.org/abs/1506.02662
[223] S. Grozdanov, A. Lucas, S. Sachdev, and K. Schalm, Absence of disorder-driven metal-insulator transitions in simple holographic models, Phys. Rev. Lett. 115, 221601 (2015),
http://arxiv.org/abs/1507.00003,
http://dx.doi.org/10.1103/PhysRevLett.115.221601
[224] S. Grozdanov, A. Lucas, and K. Schalm, Incoherent thermal transport from dirty black holes,
http://arxiv.org/abs/1511.05970
[225] T.N. Ikeda, A. Lucas, and Y. Nakai, Conductivity bounds in probe brane models,
http://arxiv.org/abs/1601.07882
[226] X-H. Ge, S-J. Sin, and S-F. Wu, Lower bound of electrical conductivity from holography,
http://arxiv.org/abs/1512.01917
[227] M. Baggioli and O. Pujolas, On holographic disorder-driven metal-insulator transitions,
http://arxiv.org/abs/1601.07897
[228] B. Goutéraux, E. Kiritsis, and Wei-Jia Li, Effective holographic theories of momentum relaxation and violation of conductivity bound,
http://arxiv.org/abs/1602.01067
[229] M. Baggioli and O. Pujolas, On effective holographic Mott insulators,
http://arxiv.org/abs/1604.08915
[230] E. Abrahams, S.V. Kravchenko, and M.P. Sarachik Metallic behavior and related phenomena in two dimensions, Rev. Mod. Phys. 73, 251 (2001),
http://dx.doi.org/10.1103/RevModPhys.73.251
[231] S.V. Kravchenko and M.P. Sarachik, Metal-insulator transition in two-dimensional electron systems, Rep. Progr. Phys. 67, 1 (2004),
http://dx.doi.org/10.1088/0034-4885/67/1/R01
[232] S.V. Kravchenko and M.P. Sarachik, A metal-insulator transition in 2D: Established facts and open questions,
http://arxiv.org/abs/1003.2968
[233] B. Spivak, S.V. Kravchenko, S.A. Kivelson, and X.P.A. Gao, Colloquium: Transport in strongly correlated two dimensional electron fluids, Rev. Mod. Phys. 82, 1743S (2010),
http://dx.doi.org/10.1103/RevModPhys.82.1743
[234] K. Damle and S. Sachdev, Non-zero temperature transport near quantum critical points, Phys. Rev. B 56, 8714 (1997),
http://dx.doi.org/10.1103/PhysRevB.56.8714
[235] S. Sachdev, Nonzero temperature transport near fractional quantum Hall critical points, Phys. Rev. B 57, 7157 (1998),
http://dx.doi.org/10.1103/PhysRevB.57.7157
[236] K. Damle and S. Sachdev, Spin dynamics and transport in gapped one-dimensional Heisenberg antiferromagnets at nonzero temperatures, Phys. Rev. B 57, 8307 (1998),
http://dx.doi.org/10.1103/PhysRevB.57.8307
[237] M. Mueller, L. Fritz, and S. Sachdev, Quantum-critical relativistic magnetotransport in graphene, Phys. Rev. B 78, 115406 (2008),
http://dx.doi.org/10.1103/PhysRevB.78.115406
[238] L. Fritz, J. Schmalian, M. Mueller, and S. Sachdev, Quantum critical transport in clean graphene, Phys. Rev. B 78, 085416 (2008),
http://dx.doi.org/10.1103/PhysRevB.78.085416
[239] L. Fritz, Quantum-critical transport at a semimetal-to-insulator transition on the honeycomb lattice, Phys. Rev. B 83, 035125 (2011),
http://dx.doi.org/10.1103/PhysRevB.83.035125
[240] B.N. Narozhny, I.V. Gornyi, M. Titov, M. Schütt, and A.D. Mirlin, Hydrodynamics in graphene: Linear-response transport, Phys. Rev. B 91, 035414 (2015),
http://dx.doi.org/10.1103/PhysRevB.91.035414
[241] U. Briskot, M. Schütt, I.V. Gornyi, M. Titov, B.N. Narozhny, and A.D. Mirlin, Collision-dominated nonlinear hydrodynamics in graphene, Phys. Rev. B 92, 115426 (2015),
http://dx.doi.org/10.1103/PhysRevB.92.115426
[242] M. Schütt, P.M. Ostrovsky, M. Titov, I.V. Gornyi, B.N. Narozhny, and A.D. Mirlin, Coulomb drag in graphene near the Dirac point, Phys. Rev. Lett. 110, 026601 (2013),
http://dx.doi.org/10.1103/PhysRevLett.110.026601
[243] M. Titov, R.V. Gorbachev, B.N. Narozhny, T. Tudorovskiy, M. Schuett, P.M. Ostrovsky, I.V. Gornyi, A.D. Mirlin, M.I. Katsnelson, K.S. Novoselov, A.K. Geim, and L.A. Ponomarenko, Giant magneto-drag in graphene at charge neutrality, Phys. Rev. Lett. 111, 166601 (2013),
http://dx.doi.org/10.1103/PhysRevLett.111.166601
[244] A.B. Kashuba, Conductivity of defectless graphene, Phys. Rev. B 78, 085415 (2008),
http://dx.doi.org/10.1103/PhysRevB.78.085415
[245] M.S. Foster and I.L. Aleiner, Slow imbalance relaxation and thermoelectric transport in graphene, Phys. Rev. B 79, 085415 (2009),
http://dx.doi.org/10.1103/PhysRevB.79.085415
[246] Hong-Yi Xie and M.S. Foster, Transport coefficients of graphene: Interplay of impurity scattering, Coulomb interaction, and optical phonons,
http://arxiv.org/abs/1601.05862
[247] J.M. Link, P.P. Orth, D.E. Sheehy, and J. Schmalian, Universal collisionless transport of graphene,
http://arxiv.org/abs/1511.05984
[248] F. Herbut, V. Juričić, and O. Vafek, Coulomb interaction, ripples, and the minimal conductivity of graphene, Phys. Rev. Lett. 100, 046403 (2008),
http://dx.doi.org/10.1103/PhysRevLett.100.046403
[249] E.G. Mishchenko, Minimal conductivity in graphene: Interaction corrections and ultraviolet anomaly, Europhys. Lett. 83, 17005 (2008),
http://dx.doi.org/10.1209/0295-5075/83/17005
[250] D.E. Sheehy and J. Schmalian, Quantum critical scaling in graphene, Phys. Rev. Lett. 99, 226803 (2007),
http://dx.doi.org/10.1103/PhysRevLett.99.226803
[251] D.E. Sheehy and J. Schmalian, Optical transparency of graphene as determined by the fine-structure constant, Phys. Rev. B 80, 193411 (2009),
http://dx.doi.org/10.1103/PhysRevB.80.193411
[252] V. Juričić, O. Vafek, and I.F. Herbut, Conductivity of interacting massless Dirac particles in graphene: Collisionless regime, Phys. Rev. B 82, 235402 (2010),
http://dx.doi.org/10.1103/PhysRevB.82.235402
[253] S. Teber and A.V. Kotikov, Interaction corrections to the minimal conductivity of graphene via dimensional regularization, Europhys. Lett. 107, 57001 (2014),
http://dx.doi.org/10.1209/0295-5075/107/57001
[254] D.A. Bandurin, I. Torre, R. Krishna Kumar, M. Ben Shalom, A. Tomadin, A. Principi, G.H. Auton, E. Khestanova, K.S. Novoselov, I.V. Grigorieva, L.A. Ponomarenko, A K. Geim, and M. Polini, Negative local resistance caused by viscous electron backflow in graphene, Science 351, 1055 (2016),
http://dx.doi.org/10.1126/science.aad0201
[255] A. Lucas, J. Crossno, Kin Chung Fong, Philip Kim, and S. Sachdev, Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene,
http://arxiv.org/abs/1510.01738
[256] A. Lucas, Sound waves and resonances in electron-hole plasma,
http://arxiv.org/abs/1604.03955
[257] D.E. Kharzeev and Ho-Ung Yee, Anomalies and time reversal invariance in relativistic hydrodynamics: the second order and higher dimensional formulations,
http://arxiv.org/abs/1105.6360
[258] D.T. Son and B.Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B 88, 104412 (2013),
http://dx.doi.org/10.1103/PhysRevB.88.104412
[259] B.Z. Spivak and A.V. Andreev, Magneto-transport phenomena related to the chiral anomaly in Weyl semimetals,
http://arxiv.org/abs/1510.01817
[260] Ya-Wen Sun and Qing Yang, Negative magnetoresistivity in holography,
http://arxiv.org/abs/1603.02624
[261] A. Lucas, R.A. Davison, and S. Sachdev, Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals,
http://arxiv.org/abs/1604.08598
[262] V.P.J. Jacobs, S.J.G. Vandoren, and H.T.C. Stoof, Holographic interaction effects on transport in Dirac semimetals, Phys. Rev. B. 90, 045108 (2014),
http://dx.doi.org/10.1103/PhysRevB.90.045108
[263] U. Gursoy, V. Jacobs, E. Plauschinn, H. Stoof, and S. Vandoren, Holographic models for undoped Weyl semimetals, J. High Energy Phys. 2013(04), 127 (2013),
http://dx.doi.org/10.1007/JHEP04(2013)127
[264] V.P.J. Jacobs, S. Grubinskas, and H.T.C. Stoof, Towards a field-theory interpretation of bottom-up holography, J. High Energy Phys. 2015(04), 033 (2015),
http://arxiv.org/abs/1411.4051,
http://dx.doi.org/10.1007/JHEP04(2015)033
[265] V.P.J. Jacobs, P. Betzios, U. Gursoy, and H.T.C. Stoof, Electromagnetic response of interacting Weyl semimetals,
http://arxiv.org/abs/1512.04883
[266] L. Levitov and G. Falkovich, Electron viscosity, current vortices and negative nonlocal resistance in graphene,
http://arxiv.org/abs/1508.00836
[267] P.J.W. Moll, P. Kushwaha, N. Nandi, B. Schmidt, and A.P. Mackenzie, Evidence for hydrodynamic electron flow in PdCoO2,
http://arxiv.org/abs/1509.05691
[268] J. Sonner and A.G. Green, Hawking radiation and nonequilibrium quantum critical current noise, Phys. Rev. Lett. 109, 091601 (2012),
http://dx.doi.org/10.1103/PhysRevLett.109.091601
[269] D. Bernard and B. Doyon, Non-equilibrium steady-states in conformal field theory, Annales Henri Poincaré 16, 113 (2015),
http://dx.doi.org/10.1007/s00023-014-0314-8
[270] D. Bernard and B. Doyon, A hydrodynamic approach to non-equilibrium conformal field theories,
http://arxiv.org/abs/1507.07474
[271] D. Bernard and B. Doyon, Energy flow in non-equilibrium conformal field theory, J. Phys. A 45, 362001 (2012),
http://dx.doi.org/10.1088/1751-8113/45/36/362001
[272] M.J. Bhaseen, B. Doyon, A. Lucas, and K. Schalm, Far from equilibrium energy flow in quantum critical systems, Nat. Phys. 11, 509 (2015),
http://dx.doi.org/10.1038/nphys3320
[273] A. Kundu and S. Kundu, Steady-state physics, effective temperature dynamics in holography,
http://arxiv.org/abs/1307.6607
[274] C. Karrasch, R. Ilan, and J.E. Moore, Non-equilibrium thermal transport and its relation to linear response,
http://arxiv.org/abs/1211.2236
[275] I. Bakas, K. Skenderis, and B. Withers, Self-similar equilibration of strongly interacting systems from holography,
http://arxiv.org/abs/1512.09151
[276] A. Lucas, K. Schalm, B. Doyon, and M.J. Bhaseen, Shock waves, rarefaction waves and non-equilibrium steady states in quantum critical systems,
http://arxiv.org/abs/1512.09037
[277] D.V. Khveshchenko, Simulating holographic correspondence in flexible graphene, Europhys. Lett. 104, 47002 (2013),
http://dx.doi.org/10.1209/0295-5075/104/47002
[278] A. Iorio, Using Weyl symmetry to make graphene a real lab for fundamental physics,
http://arxiv.org/abs/1207.6929
[279] A. Iorio, Graphene: QFT in curved spacetimes close to experiments, J. Phys. Conf. Ser. 442, 012056 (2013),
http://arxiv.org/abs/1207.6929,
http://dx.doi.org/10.1088/1742-6596/442/1/012056
[280] A. Iorio and G. Lambiase, The Hawking-Unruh phenomenon on graphene,
http://arxiv.org/abs/1108.2340
[281] M. Cvetic and G.W. Gibbons, Graphene and the Zermelo optical metric of the BTZ black hole,
http://arxiv.org/abs/1202.2938
[282] Pisin Chen and H.C. Rosu, Note on Hawking-Unruh effects in graphene,
http://arxiv.org/abs/1205.4039
[283] A. Capolupo and G. Vitiello, Probing Hawking and Unruh effects and quantum field theory in curved space by geometric invariants,
http://arxiv.org/abs/1311.2892
[284] M.A. Zubkov and G.E. Volovik, Emergent gravity in graphene,
http://arxiv.org/abs/1308.2249
[285] M.A.H. Vozmediano, M.I. Katsnelson, and F. Guinea, Gauge fields in graphene, Phys. Rep. 496, 109 (2010),
http://dx.doi.org/10.1016/j.physrep.2010.07.003
[286] F. de Juan, A. Cortijo, and M.A.H. Vozmediano Dislocations and torsion in graphene and related systems, Nucl. Phys. B 828, 625 (2010),
http://dx.doi.org/10.1016/j.nuclphysb.2009.11.012
[287] F. de Juan, A. Cortijo, M.A.H. Vozmediano, and A. Cano, Aharonov-Bohm interferences from local deformations in graphene,
http://arxiv.org/abs/1105.0599
[288] M.I. Katsnelson, F. Guinea, and M.A.H. Vozmediano, Gauge fields at the surface of topological insulators,
http://arxiv.org/abs/1105.6132
[289] A.L. Kitt, V.M. Pereira, A.K. Swan, and B.B. Goldberg, Lattice-corrected strain-induced vector potentials in graphene, Phys. Rev. B 85, 115432 (2012),
http://dx.doi.org/10.1103/PhysRevB.85.115432
[290] F. de Juan, M. Sturla, and M.A.H. Vozmediano, Space dependent Fermi velocity in strained graphene, Phys. Rev. Lett. 108, 227205 (2012),
http://dx.doi.org/10.1103/PhysRevLett.108.227205
[291] F. de Juan, J.L. Mañes, and M.A.H. Vozmediano, Gauge fields from strain in graphene, Phys. Rev. B 87, 165131 (2013),
http://dx.doi.org/10.1103/PhysRevB.87.165131
[292] M. Ramezani Masir, D. Moldovan, and F.M. Peeters, Pseudo magnetic field in strained graphene: Revisited,
http://arxiv.org/abs/1304.0629
[293] M. Oliva-Leyva and G.G. Naumis, Understanding electron behavior in strained graphene as a reciprocal space distortion,
http://arxiv.org/abs/1304.6682
[294] B. Reznik, Origin of the thermal radiation in a solid-state analog of a black-hole,
http://arxiv.org/abs/gr-qc/9703076
[295] Wanli Lu, JunFeng Jin, Huanyang Chen, and Zhifang Lin, A simple design of an artificial electromagnetic black hole,
http://arxiv.org/abs/1003.5727
[296] Miao Li, Rong-Xin Miao, and Yi Pang, Casimir energy, holographic dark energy and electromagnetic metamaterial mimicking de Sitter,
http://arxiv.org/abs/0910.3375
[297] Miao Li and Yi Pang, Holographic de Sitter universe,
http://arxiv.org/abs/1105.003
[298] Rong-Xin Miao, Rui Zheng, and Miao Li, Metamaterials mimicking dynamic spacetime, D-brane and noncommutativity in string theory,
http://arxiv.org/abs/1005.5585
[299] T.G. Mackay and A. Lakhtakia, Towards a realization of Schwarzschild-(anti-)de Sitter spacetime as a particulate metamaterial,
http://arxiv.org/abs/1102.1708
[300] T.G. Mackay and A. Lakhtakia, Towards a metamaterial simulation of a spinning cosmic string,
http://arxiv.org/abs/0911.4163
[301] Tian-Ming Zhao and Rong-Xin Miao, Huge Casimir effect at finite temperature in electromagnetic Rindler space,
http://arxiv.org/abs/1110.1919
[302] D. Brill, Black holes and wormholes in 2+1 dimensions,
http://arxiv.org/abs/gr-qc/9904083
[303] I.I. Smolyaninov, Yu-Ju Hung, and Ehren Hwang, Experimental modeling of cosmological inflation with metamaterials,
http://arxiv.org/abs/1111.3300
[304] I.I. Smolyaninov, Ehren Hwang, and E. Narimanov, Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and the “end of time”,
http://arxiv.org/abs/1107.4053
[305] I.I. Smolyaninov and E.E. Narimanov, Metric signature transitions in optical metamaterials, Phys. Rev. Lett. 105, 067402 (2010),
http://dx.doi.org/10.1103/PhysRevLett.105.067402
[306] I.I. Smolyaninov, Metamaterial “multiverse”, J. Optics 13, 024004 (2011),
http://dx.doi.org/10.1088/2040-8978/13/2/024004
[307] I.I. Smolyaninov, Metamaterial model of tachyonic dark energy,
http://arxiv.org/abs/1310.8155
[308] I.I. Smolyaninov, Analog of gravitational force in hyperbolic metamaterials, Phys. Rev. A 88, 033843 (2013),
http://arxiv.org/abs/1307.8431,
http://dx.doi.org/10.1103/PhysRevA.88.033843
[309] I.I. Smolyaninov, Extra-dimensional metamaterials: simple models of inflation and metric signature transitions,
http://arxiv.org/abs/1301.6060
[310] I.I. Smolyaninov, Modeling of causality with metamaterials, J. Optics 15, 025101 (2013),
http://dx.doi.org/10.1088/2040-8978/15/2/025101
[311] I.I. Smolyaninov, Holographic duality in nonlinear hyperbolic metamaterials,
http://arxiv.org/abs/1401.3242
[312] D.V. Khveshchenko, Contrasting string holography to its optical namesake, Europhys. Lett. 109, 61001 (2015),
http://dx.doi.org/10.1209/0295-5075/109/61001
[313] Artificial Black Holes, eds. M. Novello, M. Visser, and G.E. Volovik (World Scientific, Singapore, 2002),
http://dx.doi.org/10.1142/4861
[314] Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, eds. R. Schützhold and W.G. Unruh, Lecture Notes in Physics Vol. 718 (Springer, 2007),
http://dx.doi.org/10.1007/3-540-70859-6
[315] C. Barceló, S. Liberati, and M. Visser, Analogue gravity, Living Rev. Rel. 14, 3 (2011) [updated from Living Rev. Rel. 8, 12 (2005)],
http://dx.doi.org/10.12942/lrr-2011-3
[316] M. Visser, Survey of analogue spacetimes, in: Analogue Gravity Phenomenology, eds. D. Faccio, F. Belgiorno, S. Cacciatori, V. Gorini, S. Liberati, and U. Moschella, Lecture Notes in Physics Vol. 870 (Springer, 2013) pp. 31–50,
http://dx.doi.org/10.1007/978-3-319-00266-8_2