References
/
Nuorodos
[1] G. Juška, K.
Arlauskas, M. Viliūnas, and J. Kočka, Extraction current
transients: New method of study of charge transport in
microcrystalline silicon, Phys. Rev. Lett.
84, 4946–4949
(2000),
http://dx.doi.org/10.1103/PhysRevLett.84.4946
[2] A. Pivrikas, N.S. Sariciftci, G. Juška, and R. Osterbacka, A
review of charge transport and recombination in
polymer/fullerene organic solar cells, Prog. Photovolt. Res.
Appl.
15, 677–696 (2007),
http://dx.doi.org/10.1002/pip.791
[3] G. Juška, K. Arlauskas, M. Viliūnas, K. Genevičius, R.
Osterbacka, and H. Stubb, Charge transport in π-conjugated
polymers from extraction current transients, Phys. Rev. B
62,
16235–16238 (2000),
http://dx.doi.org/10.1103/PhysRevB.62.R16235
[4] G. Juška, M. Viliūnas, K. Arlauskas, N. Nekrašas, N. Wyrsch,
and L. Feitknecht, Hole drift mobility in μc-Si:H, J. Appl.
Phys.
89, 4971–4974 (2001),
http://dx.doi.org/10.1063/1.1359436
[5] A.J. Mozer, N.S. Sariciftci, L. Lutsan, D. Vanderzande, R.
Österbacka, M. Westerling, and G. Juška, Charge transport and
recombination in bulk heterojunction solar cells studied by the
photoinduced charge extraction in linearly increasing voltage
technique, Appl. Phys. Lett.
86, 112104 (2005),
http://dx.doi.org/10.1063/1.1882753
[6] K. Genevičius, R. Österbacka, G. Juška, K. Arlauskas, and H.
Stubb, Charge transport in π-conjugated polymers from extraction
current, Thin Solid Films
403–404, 414–417 (2002),
http://dx.doi.org/10.1016/s0040-6090(01)01583-8
[7] G. Juška, K. Genevičius, K. Arlauskas, R. Österbacka, and H.
Stubb, Charge transport at low electric fields in π-conjugated
polymers, Phys. Rev. B
65, 233208 (2002),
http://dx.doi.org/10.1103/PhysRevB.65.233208
[8] S. Bange, M. Schubert, and D. Neher, Charge mobility
determination by current extraction under linear increasing
voltages: Case of nonequilibrium charges and field-dependent
mobilities, Phys. Rev.
81, 035209 (2010),
http://dx.doi.org/10.1103/PhysRevB.81.035209
[9] R. Österbacka, A. Pivrikas, G. Juška, K. Genevičius, K.
Arlauskas, and H. Stubb, Measuring the time relaxation of
photogenerated charge carriers in organic materials, Curr. Appl.
Phys.
415, 534–538 (2004),
http://dx.doi.org/10.1016/j.cap.2004.01.013
[10] O. Semeniuk, G. Juska, J.-O. Oelerich, M. Wiemer, S. D.
Baranovskii, and A. Reznik, Charge transport mechanism in lead
oxide revealed by CELIV technique, Sci. Rep.
6, 33356
(2016),
http://dx.doi.org/10.1038/srep33359
[11] A.J. Mozer, G. Dennler, N.S. Sariciftci, M. Westerling, A.
Pivrikas, R. Osterbacka, and G. Juska, Time-dependent mobility
and recombination of the photoinduced charge carriers in
conjugated polymer/fullerene bulk heterojunction solar cells,
Phys. Rev. B
72, 035217 (2006),
http://dx.doi.org/10.1103/PhysRevB.72.035217
[12] N. Nekrašas, K. Genevičius, M. Viliūnas, and G. Juška,
Features of current transients of photogenerated charge
carriers, extracted by linearly increased voltage, Chem. Phys.
404,
56–59 (2012),
http://dx.doi.org/10.1016/j.chemphys.2012.01.008
[13] G. Juška, N. Nekrašas, V. Valentinavičius, P. Meredith, and
A. Pivrikas, Extraction of photogenerated charge carriers by
linearly increasing voltage in the case of Langevin
recombination, Phys. Rev. B
84, 155202 (2011),
http://dx.doi.org/10.1103/PhysRevB.84.155202
[14] G. Juška, N. Nekrašas, and K. Genevičius, Investigation of
charge carriers transport from extraction current transients of
injected charge carriers, J. Non-Cryst. Sol.
358,
748–750 (2012),
http://dx.doi.org/10.1016/j.jnoncrysol.2011.12.016
[15] A. Armin, G. Juska, M. Ullah, M. Velusamy, P.L. Burn, P.
Meredith, and A. Pivrikas, Balanced carrier mobilities: not a
necessary condition for high-efficiency thin organic solar cells
as determined by MIS-CELIV, Adv. Energy Mater.
4,
1300954 (2014),
http://dx.doi.org/10.1002/aenm.201300954
[16] J. Važgėla, K. Genevičius, and G. Juška, i-CELIV technique
for investigation of charge carriers transport properties, Chem.
Phys.
478, 126–129 (2016),
http://dx.doi.org/10.1016/j.chemphys.2016.04.005
[17] G. Juška, N. Nekrašas, K. Genevičius, and A. Pivrikas,
Current transients in organic field effect transistors, Appl.
Phys. Lett.
102, 163306 (2013),
http://dx.doi.org/10.1063/1.4803054
[18] G. Juška, N. Nekrašas, K. Genevičius, and T. Grigaitis, The
determination of charge carrier mobility from the current
transients in organic field effect transistor, J. Appl. Phys.
116,
023702 (2014),
http://dx.doi.org/10.1063/1.4887798
[19] G. Juška, K. Genevičius, R. Osterbacka, K. Arlauskas, T.
Kreouzis, D.D.C. Bradley, and H. Stubb, Initial transport of
photogenerated charge carriers in π-conjugated polymers, Phys.
Rev. B
67, 08120 (2003),
http://dx.doi.org/10.1103/PhysRevB.67.081201
[20] A. Pivrikas, G. Juška, A.J. Mozer, M. Scharber, K.
Arlauskas, N.S. Sariciftci, H. Stubb, and R. Osterbacka,
Bimolecular recombination coefficient as a sensitive testing
parameter for low-mobility solar-cell materials, Phys. Rev.
Lett.
94, 176806 (2005),
http://dx.doi.org/10.1103/PhysRevLett.94.176806
[21] G. Juška, K. Arlauskas, G. Sliaužys, A. Pivrikas, A.J.
Mozer, N.S. Sariciftci, M. Scharber, and R. Osterbacka, Double
injection as a technique to study charge carrier transport and
recombination in bulk-heterojunction solar cells, Appl. Phys.
Lett.
87, 222110 (2005),
http://dx.doi.org/10.1063/1.2137454
[22] G. Juška, K. Genevičius, G. Sliaužys, A. Pivrikas, M.
Scharber, and R. Osterbacka, Double-injection current transients
as a way of measuring transport in insulating organic films, J.
Appl. Phys.
101, 114505 (2007),
http://dx.doi.org/10.1063/1.2736791
[23] G. Juška, K. Genevičius, N. Nekrašas, and G. Sliaužys,
Charge carriers transport, recombination and trapping in organic
solar cells studied by double injection technique, IEEE J. Sel.
Top. Quantum Electron.
16(6), 1764–1769 (2010),
http://dx.doi.org/10.1109/JSTQE.2010.2041752
[24] G. Juška, K. Genevičius, N. Nekrašas, G. Sliaužys, and R.
Österbacka, Two dimensional Langevin recombination in
regioregular poly(3-hexylthiophene), Appl. Phys. Lett.
95,
013303 (2009),
http://dx.doi.org/10.1063/1.3141513
[25] G. Juška, K. Genevičius, G. Sliaužys, and N. Nekrašas,
Two-dimensional Langevin recombination, Phys. Status Solidi C
7,
980–983 (2010),
http://dx.doi.org/10.1002/pssc.200982660
[26] A. Reznik, S.D. Baranovskii, O. Rubel, G. Juska, S.O.
Kasap, Y. Ohkawa, K. Tanioka, and J.A. Rowlands, Avalanche
multiplication phenomenon in amorphous semiconductors: amorphous
selenium versus hydrogenated amorphous silicon, J. Appl. Phys.
102,
053711 (2007),
http://dx.doi.org/10.1063/1.2776223