References
/
          Nuorodos
        
        [1] G. Juška, K.
        Arlauskas, M. Viliūnas, and J. Kočka, Extraction current
        transients: New method of study of charge transport in
        microcrystalline silicon, Phys. Rev. Lett. 
84, 4946–4949
        (2000), 
        
http://dx.doi.org/10.1103/PhysRevLett.84.4946
        [2] A. Pivrikas, N.S. Sariciftci, G. Juška, and R. Osterbacka, A
        review of charge transport and recombination in
        polymer/fullerene organic solar cells, Prog. Photovolt. Res.
        Appl. 
15, 677–696 (2007), 
        
http://dx.doi.org/10.1002/pip.791
        [3] G. Juška, K. Arlauskas, M. Viliūnas, K. Genevičius, R.
        Osterbacka, and H. Stubb, Charge transport in π-conjugated
        polymers from extraction current transients, Phys. Rev. B 
62,
        16235–16238 (2000), 
        
http://dx.doi.org/10.1103/PhysRevB.62.R16235
        [4] G. Juška, M. Viliūnas, K. Arlauskas, N. Nekrašas, N. Wyrsch,
        and L. Feitknecht, Hole drift mobility in μc-Si:H, J. Appl.
        Phys. 
89, 4971–4974 (2001), 
        
http://dx.doi.org/10.1063/1.1359436
        [5] A.J. Mozer, N.S. Sariciftci, L. Lutsan, D. Vanderzande, R.
        Österbacka, M. Westerling, and G. Juška, Charge transport and
        recombination in bulk heterojunction solar cells studied by the
        photoinduced charge extraction in linearly increasing voltage
        technique, Appl. Phys. Lett. 
86, 112104 (2005), 
        
http://dx.doi.org/10.1063/1.1882753
        [6] K. Genevičius, R. Österbacka, G. Juška, K. Arlauskas, and H.
        Stubb, Charge transport in π-conjugated polymers from extraction
        current, Thin Solid Films 
403–404, 414–417 (2002), 
        
http://dx.doi.org/10.1016/s0040-6090(01)01583-8
        [7] G. Juška, K. Genevičius, K. Arlauskas, R. Österbacka, and H.
        Stubb, Charge transport at low electric fields in π-conjugated
        polymers, Phys. Rev. B 
65, 233208 (2002), 
        
http://dx.doi.org/10.1103/PhysRevB.65.233208
        [8] S. Bange, M. Schubert, and D. Neher, Charge mobility
        determination by current extraction under linear increasing
        voltages: Case of nonequilibrium charges and field-dependent
        mobilities, Phys. Rev. 
81, 035209 (2010), 
        
http://dx.doi.org/10.1103/PhysRevB.81.035209
        [9] R. Österbacka, A. Pivrikas, G. Juška, K. Genevičius, K.
        Arlauskas, and H. Stubb, Measuring the time relaxation of
        photogenerated charge carriers in organic materials, Curr. Appl.
        Phys. 
415, 534–538 (2004), 
        
http://dx.doi.org/10.1016/j.cap.2004.01.013
        [10] O. Semeniuk, G. Juska, J.-O. Oelerich, M. Wiemer, S. D.
        Baranovskii, and A. Reznik, Charge transport mechanism in lead
        oxide revealed by CELIV technique, Sci. Rep. 
6, 33356
        (2016), 
        
http://dx.doi.org/10.1038/srep33359
        [11] A.J. Mozer, G. Dennler, N.S. Sariciftci, M. Westerling, A.
        Pivrikas, R. Osterbacka, and G. Juska, Time-dependent mobility
        and recombination of the photoinduced charge carriers in
        conjugated polymer/fullerene bulk heterojunction solar cells,
        Phys. Rev. B 
72, 035217 (2006), 
        
http://dx.doi.org/10.1103/PhysRevB.72.035217
        [12] N. Nekrašas, K. Genevičius, M. Viliūnas, and G. Juška,
        Features of current transients of photogenerated charge
        carriers, extracted by linearly increased voltage, Chem. Phys. 
404,
        56–59 (2012), 
        
http://dx.doi.org/10.1016/j.chemphys.2012.01.008
        [13] G. Juška, N. Nekrašas, V. Valentinavičius, P. Meredith, and
        A. Pivrikas, Extraction of photogenerated charge carriers by
        linearly increasing voltage in the case of Langevin
        recombination, Phys. Rev. B 
84, 155202 (2011), 
        
http://dx.doi.org/10.1103/PhysRevB.84.155202
        [14] G. Juška, N. Nekrašas, and K. Genevičius, Investigation of
        charge carriers transport from extraction current transients of
        injected charge carriers, J. Non-Cryst. Sol. 
358,
        748–750 (2012), 
        
http://dx.doi.org/10.1016/j.jnoncrysol.2011.12.016
        [15] A. Armin, G. Juska, M. Ullah, M. Velusamy, P.L. Burn, P.
        Meredith, and A. Pivrikas, Balanced carrier mobilities: not a
        necessary condition for high-efficiency thin organic solar cells
        as determined by MIS-CELIV, Adv. Energy Mater. 
4,
        1300954 (2014), 
        
http://dx.doi.org/10.1002/aenm.201300954
        [16] J. Važgėla, K. Genevičius, and G. Juška, i-CELIV technique
        for investigation of charge carriers transport properties, Chem.
        Phys. 
478, 126–129 (2016), 
        
http://dx.doi.org/10.1016/j.chemphys.2016.04.005
        [17] G. Juška, N. Nekrašas, K. Genevičius, and A. Pivrikas,
        Current transients in organic field effect transistors, Appl.
        Phys. Lett. 
102, 163306 (2013), 
        
http://dx.doi.org/10.1063/1.4803054
        [18] G. Juška, N. Nekrašas, K. Genevičius, and T. Grigaitis, The
        determination of charge carrier mobility from the current
        transients in organic field effect transistor, J. Appl. Phys. 
116,
        023702 (2014), 
        
http://dx.doi.org/10.1063/1.4887798
        [19] G. Juška, K. Genevičius, R. Osterbacka, K. Arlauskas, T.
        Kreouzis, D.D.C. Bradley, and H. Stubb, Initial transport of
        photogenerated charge carriers in π-conjugated polymers, Phys.
        Rev. B 
67, 08120 (2003), 
        
http://dx.doi.org/10.1103/PhysRevB.67.081201
        [20] A. Pivrikas, G. Juška, A.J. Mozer, M. Scharber, K.
        Arlauskas, N.S. Sariciftci, H. Stubb, and R. Osterbacka,
        Bimolecular recombination coefficient as a sensitive testing
        parameter for low-mobility solar-cell materials, Phys. Rev.
        Lett. 
94, 176806 (2005), 
        
http://dx.doi.org/10.1103/PhysRevLett.94.176806
        [21] G. Juška, K. Arlauskas, G. Sliaužys, A. Pivrikas, A.J.
        Mozer, N.S. Sariciftci, M. Scharber, and R. Osterbacka, Double
        injection as a technique to study charge carrier transport and
        recombination in bulk-heterojunction solar cells, Appl. Phys.
        Lett. 
87, 222110 (2005), 
        
http://dx.doi.org/10.1063/1.2137454
        [22] G. Juška, K. Genevičius, G. Sliaužys, A. Pivrikas, M.
        Scharber, and R. Osterbacka, Double-injection current transients
        as a way of measuring transport in insulating organic films, J.
        Appl. Phys. 
101, 114505 (2007), 
        
http://dx.doi.org/10.1063/1.2736791
        [23] G. Juška, K. Genevičius, N. Nekrašas, and G. Sliaužys,
        Charge carriers transport, recombination and trapping in organic
        solar cells studied by double injection technique, IEEE J. Sel.
        Top. Quantum Electron. 
16(6), 1764–1769 (2010), 
        
http://dx.doi.org/10.1109/JSTQE.2010.2041752
        [24] G. Juška, K. Genevičius, N. Nekrašas, G. Sliaužys, and R.
        Österbacka, Two dimensional Langevin recombination in
        regioregular poly(3-hexylthiophene), Appl. Phys. Lett. 
95,
        013303 (2009), 
        
http://dx.doi.org/10.1063/1.3141513
        [25] G. Juška, K. Genevičius, G. Sliaužys, and N. Nekrašas,
        Two-dimensional Langevin recombination, Phys. Status Solidi C 
7,
        980–983 (2010), 
        
http://dx.doi.org/10.1002/pssc.200982660
        [26] A. Reznik, S.D. Baranovskii, O. Rubel, G. Juska, S.O.
        Kasap, Y. Ohkawa, K. Tanioka, and J.A. Rowlands, Avalanche
        multiplication phenomenon in amorphous semiconductors: amorphous
        selenium versus hydrogenated amorphous silicon, J. Appl. Phys. 
102,
        053711 (2007), 
        
http://dx.doi.org/10.1063/1.2776223