[PDF]    http://dx.doi.org/10.3952/physics.v56i3.3367

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 182–189 (2016)


CHARGE CARRIER TRANSPORT AND RECOMBINATION IN DISORDERED MATERIALS
Gytis Juška, Kęstutis Arlauskas, and Kristijonas Genevičius
Department of Solid State Electronics, Vilnius University, Saulėtekio 3A, LT-10222 Vilnius, Lithuania
E-mail: kestutis.arlauskas@ff.vu.lt

Received 8 July 2016; accepted 23 September 2016

In this brief review the methods for investigation of charge carrier transport and recombination in thin layers of disordered materials and the obtained results are discussed. The method of charge carrier extraction by linearly increasing voltage (CELIV) is useful for the determination of mobility, bulk conductivity and density of equilibrium charge carriers. The extraction of photogenerated charge carriers (photo-CELIV) allows one to independently investigate relaxation of both the mobility and density of photogenerated charge carriers. The extraction of injected charge carriers (i-CELIV) is effective for the independent investigation of transport peculiarities of both injected holes and electrons in bulk heterojunctions. For the investigation of charge carrier recombination we proposed integral time-of-flight (TOF) and double-injection (DI) current transient methods. The methods allowed us to obtain the following significant results: to determine the reason of the conductivity dependence on electric field strength and temperature in the amorphous and microcrystalline hydrogenated silicon and π-conjugated polymers, the time dependent Langevin recombination, the impact of morphology on charge carrier mobility, the reason of reduced Langevin recombination in RR-PHT (regioregular poly(3-hexylthiophene))/PCBM (1-(3-methoxycarbonyl)propyl-1phenyl-[6,6]-methanofullerene) bulk heterojunction structures – 2D Langevin recombination; and to evaluate that the mobility of holes is predetermined by off-diagonal dispersion in poly-PbO.
Keywords: disordered materials, mobility, recombination
PACS: 72.20Jv, 72.80Le, 73.50Jt, 88.40jr

KRŪVININKŲ PERNAŠA IR REKOMBINACIJA NETVARKIOSIOSE MEDŽIAGOSE

Gytis Juška, Kęstutis Arlauskas, Kristijonas Genevičius
Vilniaus universiteto Kietojo kūno elektronikos katedra, Vilnius, Lietuva

Šioje apžvalgoje pateikti krūvininkų pernašos ir rekombinacijos netvarkiosiose medžiagose tyrimo metodai ir gauti rezultatai. Pusiausvyrinių krūvininkų ekstrakcijos tiesiškai didėjančia įtampa metodas (CELIV) patogus matuojant krūvininkų judrį, tankį ir tūrinį laidumą. Fotogeneruotų krūvininkų ekstrakcijos metodas (photo-CELIV) įgalina atskirai matuoti krūvininkų judrio ir tankio relaksaciją po fotosužadinimo. Injektuotų krūvininkų ekstrakcijos metodas (i-CELIV) patogus nustatant elektronų ir skylių judrius tūrinėse heterosandūrose atskirai. Krūvininkų rekombinacijai tirti taip pat pasiūlyti integrinis lėkio trukmės ir dvigubos injekcijos srovės kinetikos metodai. Tiriant amorfinio ir mikrokristalinio silicio, švino oksido ir π-konjuguotų polimerų bei jų tūrinių heterosandūrų elektrines savybes šiais metodais, gauti svarbūs rezultatai.


References / Nuorodos

[1] G. Juška, K. Arlauskas, M. Viliūnas, and J. Kočka, Extraction current transients: New method of study of charge transport in microcrystalline silicon, Phys. Rev. Lett. 84, 4946–4949 (2000),
http://dx.doi.org/10.1103/PhysRevLett.84.4946
[2] A. Pivrikas, N.S. Sariciftci, G. Juška, and R. Osterbacka, A review of charge transport and recombination in polymer/fullerene organic solar cells, Prog. Photovolt. Res. Appl. 15, 677–696 (2007),
http://dx.doi.org/10.1002/pip.791
[3] G. Juška, K. Arlauskas, M. Viliūnas, K. Genevičius, R. Osterbacka, and H. Stubb, Charge transport in π-conjugated polymers from extraction current transients, Phys. Rev. B 62, 16235–16238 (2000),
http://dx.doi.org/10.1103/PhysRevB.62.R16235
[4] G. Juška, M. Viliūnas, K. Arlauskas, N. Nekrašas, N. Wyrsch, and L. Feitknecht, Hole drift mobility in μc-Si:H, J. Appl. Phys. 89, 4971–4974 (2001),
http://dx.doi.org/10.1063/1.1359436
[5] A.J. Mozer, N.S. Sariciftci, L. Lutsan, D. Vanderzande, R. Österbacka, M. Westerling, and G. Juška, Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique, Appl. Phys. Lett. 86, 112104 (2005),
http://dx.doi.org/10.1063/1.1882753
[6] K. Genevičius, R. Österbacka, G. Juška, K. Arlauskas, and H. Stubb, Charge transport in π-conjugated polymers from extraction current, Thin Solid Films 403–404, 414–417 (2002),
http://dx.doi.org/10.1016/s0040-6090(01)01583-8
[7] G. Juška, K. Genevičius, K. Arlauskas, R. Österbacka, and H. Stubb, Charge transport at low electric fields in π-conjugated polymers, Phys. Rev. B 65, 233208 (2002),
http://dx.doi.org/10.1103/PhysRevB.65.233208
[8] S. Bange, M. Schubert, and D. Neher, Charge mobility determination by current extraction under linear increasing voltages: Case of nonequilibrium charges and field-dependent mobilities, Phys. Rev. 81, 035209 (2010),
http://dx.doi.org/10.1103/PhysRevB.81.035209
[9] R. Österbacka, A. Pivrikas, G. Juška, K. Genevičius, K. Arlauskas, and H. Stubb, Measuring the time relaxation of photogenerated charge carriers in organic materials, Curr. Appl. Phys. 415, 534–538 (2004),
http://dx.doi.org/10.1016/j.cap.2004.01.013
[10] O. Semeniuk, G. Juska, J.-O. Oelerich, M. Wiemer, S. D. Baranovskii, and A. Reznik, Charge transport mechanism in lead oxide revealed by CELIV technique, Sci. Rep. 6, 33356 (2016),
http://dx.doi.org/10.1038/srep33359
[11] A.J. Mozer, G. Dennler, N.S. Sariciftci, M. Westerling, A. Pivrikas, R. Osterbacka, and G. Juska, Time-dependent mobility and recombination of the photoinduced charge carriers in conjugated polymer/fullerene bulk heterojunction solar cells, Phys. Rev. B 72, 035217 (2006),
http://dx.doi.org/10.1103/PhysRevB.72.035217
[12] N. Nekrašas, K. Genevičius, M. Viliūnas, and G. Juška, Features of current transients of photogenerated charge carriers, extracted by linearly increased voltage, Chem. Phys. 404, 56–59 (2012),
http://dx.doi.org/10.1016/j.chemphys.2012.01.008
[13] G. Juška, N. Nekrašas, V. Valentinavičius, P. Meredith, and A. Pivrikas, Extraction of photogenerated charge carriers by linearly increasing voltage in the case of Langevin recombination, Phys. Rev. B 84, 155202 (2011),
http://dx.doi.org/10.1103/PhysRevB.84.155202
[14] G. Juška, N. Nekrašas, and K. Genevičius, Investigation of charge carriers transport from extraction current transients of injected charge carriers, J. Non-Cryst. Sol. 358, 748–750 (2012),
http://dx.doi.org/10.1016/j.jnoncrysol.2011.12.016
[15] A. Armin, G. Juska, M. Ullah, M. Velusamy, P.L. Burn, P. Meredith, and A. Pivrikas, Balanced carrier mobilities: not a necessary condition for high-efficiency thin organic solar cells as determined by MIS-CELIV, Adv. Energy Mater. 4, 1300954 (2014),
http://dx.doi.org/10.1002/aenm.201300954
[16] J. Važgėla, K. Genevičius, and G. Juška, i-CELIV technique for investigation of charge carriers transport properties, Chem. Phys. 478, 126–129 (2016),
http://dx.doi.org/10.1016/j.chemphys.2016.04.005
[17] G. Juška, N. Nekrašas, K. Genevičius, and A. Pivrikas, Current transients in organic field effect transistors, Appl. Phys. Lett. 102, 163306 (2013),
http://dx.doi.org/10.1063/1.4803054
[18] G. Juška, N. Nekrašas, K. Genevičius, and T. Grigaitis, The determination of charge carrier mobility from the current transients in organic field effect transistor, J. Appl. Phys. 116, 023702 (2014),
http://dx.doi.org/10.1063/1.4887798
[19] G. Juška, K. Genevičius, R. Osterbacka, K. Arlauskas, T. Kreouzis, D.D.C. Bradley, and H. Stubb, Initial transport of photogenerated charge carriers in π-conjugated polymers, Phys. Rev. B 67, 08120 (2003),
http://dx.doi.org/10.1103/PhysRevB.67.081201
[20] A. Pivrikas, G. Juška, A.J. Mozer, M. Scharber, K. Arlauskas, N.S. Sariciftci, H. Stubb, and R. Osterbacka, Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials, Phys. Rev. Lett. 94, 176806 (2005),
http://dx.doi.org/10.1103/PhysRevLett.94.176806
[21] G. Juška, K. Arlauskas, G. Sliaužys, A. Pivrikas, A.J. Mozer, N.S. Sariciftci, M. Scharber, and R. Osterbacka, Double injection as a technique to study charge carrier transport and recombination in bulk-heterojunction solar cells, Appl. Phys. Lett. 87, 222110 (2005),
http://dx.doi.org/10.1063/1.2137454
[22] G. Juška, K. Genevičius, G. Sliaužys, A. Pivrikas, M. Scharber, and R. Osterbacka, Double-injection current transients as a way of measuring transport in insulating organic films, J. Appl. Phys. 101, 114505 (2007),
http://dx.doi.org/10.1063/1.2736791
[23] G. Juška, K. Genevičius, N. Nekrašas, and G. Sliaužys, Charge carriers transport, recombination and trapping in organic solar cells studied by double injection technique, IEEE J. Sel. Top. Quantum Electron. 16(6), 1764–1769 (2010),
http://dx.doi.org/10.1109/JSTQE.2010.2041752
[24] G. Juška, K. Genevičius, N. Nekrašas, G. Sliaužys, and R. Österbacka, Two dimensional Langevin recombination in regioregular poly(3-hexylthiophene), Appl. Phys. Lett. 95, 013303 (2009),
http://dx.doi.org/10.1063/1.3141513
[25] G. Juška, K. Genevičius, G. Sliaužys, and N. Nekrašas, Two-dimensional Langevin recombination, Phys. Status Solidi C 7, 980–983 (2010),
http://dx.doi.org/10.1002/pssc.200982660
[26] A. Reznik, S.D. Baranovskii, O. Rubel, G. Juska, S.O. Kasap, Y. Ohkawa, K. Tanioka, and J.A. Rowlands, Avalanche multiplication phenomenon in amorphous semiconductors: amorphous selenium versus hydrogenated amorphous silicon, J. Appl. Phys. 102, 053711 (2007),
http://dx.doi.org/10.1063/1.2776223