[PDF]    http://dx.doi.org/10.3952/physics.v56i3.3364

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 149–163 (2016)


FEYNMAN RULES FOR WEYL SPINORS WITH MIXED DIRAC AND MAJORANA MASS TERMS
Vytautas Dūdėnas and Thomas Gajdosik
Department of Theoretical Physics, Faculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: vytautasdudenas@inbox.lt; tgajdosik@yahoo.com

Received 23 May 2016; revised 8 July 2016; accepted 23 September 2016

We present a basic formalism for using the Weyl spinor notation in Feynman rules. We focus on Weyl spinors with mixed Dirac and Majorana mass terms. To clarify the definitions we derive the Feynman rules from the path integral and present two examples: loop corrections for a fermion propagator and a tree level analysis of a seesaw toy model.
Keywords: Weyl spinors, Feynman rules, seesaw mechanism
PACS: 14.60.St, 14.60.Pq

FEINMANO TAISYKLĖS VEILIO SPINORIAMS SU SUMAIŠYTAIS DIRAKO IR MAJORANOS MASĖS NARIAIS

Vytautas Dūdėnas, Thomas Gajdosik
Vilniaus universiteto Teorinės fizikos katedra,Vilnius, Lietuva

Pristatome formalizmą, reikalingą norint naudoti Veilio spinorius remiantis Feinmano taisyklėmis. Pagrindinis dėmesys skiriamas Veilio spinoriams, sumaišytiems su Dirako ir Majoranos masės nariais. Tam, kad būtų aiškūs visi naudojami apibrėžimai, mes išvedame Feinmano taisykles iš trajektorijų integralo. Taip pat pristatome du paprastus Veilio spinorių naudojimo pavyzdžius: fermiono propagatoriaus kilpos pataisų integralų sukonstravimą ir žaislinio sūpuoklių modelio pirmojo artinio masės narių išvedimą.


References / Nuorodos

[1] K.M. Heeger, Evidence for neutrino mass: A decade of discovery, in: SEASAW 25: Proceedings of the International Conference on the Seesaw Mechanism, eds. J. Orloff, S. Lavignac, and M. Cribier (World Scientific, Singapore, 2005) pp. 65–80,
https://arxiv.org/abs/hep-ex/0412032
[2] SEESAW 25: Proceedings of the International Conference on the Seesaw Mechanism, eds. J. Orloff, S. Lavignac, and M. Cribier (World Scientific, Singapore, 2005),
http://dx.doi.org/10.1142/5717
[3] M.E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, Reading, USA, 1995),
http://search.perseusbooksgroup.com/book/paperback/an-introduction-to-quantum-field-theory-student-economy-edition/9780813350196
[4] I.J.R. Aitchison and A.J.G. Hey, Gauge Theories in Particle Physics: Volume I: From Relativistic Quantum Mechanics to QED (IOP, Bristol, UK, 2003),
https://www.crcpress.com/Gauge-Theories-in-Particle-Physics-Volume-I-From-Relativistic-Quantum/Aitchison-Hey/p/book/9780849387753
[5] H.K. Dreiner, H.E. Haber, and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494, 1–196 (2010),
http://dx.doi.org/10.1016/j.physrep.2010.05.002
[6] A. Bilal, Introduction to Supersymmetry, lecture notes (2001),
https://arxiv.org/abs/hep-th/0101055
[7] S. Dittmaier, Weyl–van der Waerden formalism for helicity amplitudes of massive particles, Phys. Rev. D 59, 016007 (1998),
http://dx.doi.org/10.1103/PhysRevD.59.016007
[8] J.B. Albert, D.J. Auty, P.S. Barbeau, D. Beck, V. Belov, M. Breidenbach, T. Brunner, A. Burenkov, G.F. Cao, C. Chambers, et al. (EXO-200 Collaboration), Search for Majorana neutrinos with the first two years of EXO-200 data, Nature 510, 229–234 (2014),
http://dx.doi.org/10.1038/nature13432
[9] G. Senjanovic, Neutrino mass: From LHC to grand unification, Riv. Nuovo Cim. 34, 1–68 (2011),
http://dx.doi.org/10.1393/ncr/i2011-10061-8
[10] H. Weyl, Electron and gravitation. 1, Z. Phys. 56, 330–352 (1929) [in German],
http://dx.doi.org/10.1007/BF01339504
[11] P.B. Pal, Dirac, Majorana and Weyl fermions, Am. J. Phys. 79, 485–498 (2011),
http://dx.doi.org/10.1119/1.3549729
[12] T. Ohlsson, Relativistic Quantum Physics: From Advanced Quantum Mechanics to Introductory Quantum Field Theory (Cambridge University Press, Cambridge, UK, 2011),
http://www.cambridge.org/academic/subjects/physics/particle-physics-and-nuclear-physics/relativistic-quantum-physics-advanced-quantum-mechanics-introductory-quantum-field-theory
[13] M. Srednicki, Quantum Field Theory (Cambridge University Press, Cambridge, UK, 2007),
http://www.cambridge.org/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-field-theory-2
[14] P. Minkowski, μ → eγ at a rate of one out of 109 muon decays? Phys. Lett. B 67, 421–428 (1977),
http://dx.doi.org/10.1016/0370-2693(77)90435-X
[15] R.N. Mohapatra and G. Senjanovic, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44, 912 (1980),
http://dx.doi.org/10.1103/PhysRevLett.44.912
[16] T. Yanagida, Horizontal symmetry and masses of neutrinos,  in: Proceedings of the Workshop on the Unified Theory and Baryon Number in the Universe, eds. O. Sawada and A. Sugamoto (1979) pp. 95–98, report 79-18, and  Prog. Theor. Phys. 64, 1103–1105 (1980),
http://dx.doi.org/10.1143/PTP.64.1103
[17] M. Gell-Mann, P. Ramond, and R. Slansky, Complex spinors and unified theories, in: Proceedings of the Supergravity Workshop at Stony Brook, eds P. van Nieuwenhuizen and D.Z. Freedman (North Holland, Amsterdam, 1979) pp. 315–321,
https://arxiv.org/abs/1306.4669