Received 23 May 2016; revised 8 July 2016; accepted 23 September
2016
FEINMANO TAISYKLĖS VEILIO
SPINORIAMS SU SUMAIŠYTAIS DIRAKO IR MAJORANOS MASĖS NARIAIS
References
/
Nuorodos
[1] K.M. Heeger,
Evidence for neutrino mass: A decade of discovery, in:
SEASAW
25: Proceedings of the International Conference on the Seesaw
Mechanism, eds. J. Orloff, S. Lavignac, and M. Cribier
(World Scientific, Singapore, 2005) pp. 65–80,
https://arxiv.org/abs/hep-ex/0412032
[2]
SEESAW 25: Proceedings of the International Conference
on the Seesaw Mechanism, eds. J. Orloff, S. Lavignac, and
M. Cribier (World Scientific, Singapore, 2005),
http://dx.doi.org/10.1142/5717
[3] M.E. Peskin and D.V. Schroeder,
An Introduction to
Quantum Field Theory (Addison-Wesley, Reading, USA, 1995),
http://search.perseusbooksgroup.com/book/paperback/an-introduction-to-quantum-field-theory-student-economy-edition/9780813350196
[4] I.J.R. Aitchison and A.J.G. Hey,
Gauge Theories
in Particle Physics: Volume I: From Relativistic Quantum
Mechanics to QED (IOP, Bristol, UK, 2003),
https://www.crcpress.com/Gauge-Theories-in-Particle-Physics-Volume-I-From-Relativistic-Quantum/Aitchison-Hey/p/book/9780849387753
[5] H.K. Dreiner, H.E. Haber, and S.P. Martin, Two-component
spinor techniques and Feynman rules for quantum field theory and
supersymmetry, Phys. Rept.
494, 1–196 (2010),
http://dx.doi.org/10.1016/j.physrep.2010.05.002
[6] A. Bilal, Introduction to Supersymmetry, lecture notes
(2001),
https://arxiv.org/abs/hep-th/0101055
[7] S. Dittmaier, Weyl–van der Waerden formalism for helicity
amplitudes of massive particles, Phys. Rev. D
59, 016007
(1998),
http://dx.doi.org/10.1103/PhysRevD.59.016007
[8] J.B. Albert, D.J. Auty, P.S. Barbeau, D. Beck, V. Belov, M.
Breidenbach, T. Brunner, A. Burenkov, G.F. Cao, C. Chambers, et
al. (EXO-200 Collaboration), Search for Majorana neutrinos with
the first two years of EXO-200 data, Nature
510, 229–234
(2014),
http://dx.doi.org/10.1038/nature13432
[9] G. Senjanovic, Neutrino mass: From LHC to grand unification,
Riv. Nuovo Cim.
34, 1–68 (2011),
http://dx.doi.org/10.1393/ncr/i2011-10061-8
[10] H. Weyl, Electron and gravitation. 1, Z. Phys.
56,
330–352 (1929) [in German],
http://dx.doi.org/10.1007/BF01339504
[11] P.B. Pal, Dirac, Majorana and Weyl fermions, Am. J. Phys.
79,
485–498 (2011),
http://dx.doi.org/10.1119/1.3549729
[12] T. Ohlsson,
Relativistic Quantum Physics: From Advanced
Quantum Mechanics to Introductory Quantum Field Theory
(Cambridge University Press, Cambridge, UK, 2011),
http://www.cambridge.org/academic/subjects/physics/particle-physics-and-nuclear-physics/relativistic-quantum-physics-advanced-quantum-mechanics-introductory-quantum-field-theory
[13] M. Srednicki,
Quantum Field Theory (Cambridge
University Press, Cambridge, UK, 2007),
http://www.cambridge.org/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-field-theory-2
[14] P. Minkowski, μ → eγ at a rate of one out of 10
9
muon decays? Phys. Lett. B
67, 421–428 (1977),
http://dx.doi.org/10.1016/0370-2693(77)90435-X
[15] R.N. Mohapatra and G. Senjanovic, Neutrino mass and
spontaneous parity violation, Phys. Rev. Lett.
44, 912
(1980),
http://dx.doi.org/10.1103/PhysRevLett.44.912
[16] T. Yanagida, Horizontal symmetry and masses of
neutrinos, in:
Proceedings of the Workshop on the
Unified Theory and Baryon Number in the Universe, eds. O.
Sawada and A. Sugamoto (1979) pp. 95–98, report 79-18, and
Prog. Theor. Phys.
64, 1103–1105 (1980),
http://dx.doi.org/10.1143/PTP.64.1103
[17] M. Gell-Mann, P. Ramond, and R. Slansky, Complex spinors
and unified theories, in:
Proceedings of the Supergravity
Workshop at Stony Brook, eds P. van Nieuwenhuizen and D.Z.
Freedman (North Holland, Amsterdam, 1979) pp. 315–321,
https://arxiv.org/abs/1306.4669