Robert A. Evarestov, Andrei V. Bandura, and Vitaly V. Porsev
Received 3 October 2015; revised 19 January 2016; accepted 21 June
2016
References
/
Nuorodos
[1] R.A. Evarestov,
Theoretical
Modeling of Inorganic Nanostructures. Symmetry and ab-initio
Calculations of Nanolayers, Nanotubes and Nanowires,
Springer Series in NanoScience and Technology (Springer, Berlin,
Heidelberg, 2015),
http://dx.doi.org/10.1007/978-3-662-44581-5
[2] Ge.G. Samsonidze, R. Saito, A. Jorio, M.A. Pimenta, A.G.
Souza Filho, A. Grüneis, G. Dresselhaus, and M.S. Dresselhaus,
The concept of cutting lines in carbon nanotube science, J.
Nanosci. Nanotech.
3, 431–458 (2003),
http://dx.doi.org/10.1166/jnn.2003.231
[3] O. Dubay and G. Kresse, Accurate density functional
calculations for the phonon dispersion relations of graphite
layer and carbon nanotubes, Phys. Rev. B
67, 035401
(2003),
http://dx.doi.org/10.1103/PhysRevB.67.035401
[4] T.B. Boykin and G. Klimeck, Practical application of
zone-folding concepts in tight-binding calculations, Phys. Rev.
B
71, 115215 (2005),
http://dx.doi.org/10.1103/PhysRevB.71.115215
[5] R. Saito, K. Sato, Y. Oyama, J. Jiang, Ge.G. Samsonidze, G.
Dresselhaus, and M.S. Dresselhaus, Cutting lines near the Fermi
energy of single-wall carbon nanotubes, Phys. Rev. B
72,
153413 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.153413
[6] J-C. Charlier, X. Blase, and S. Roche, Electronic and
transport properties of nanotubes, Rev. Mod. Phys.
79,
677–732 (2007),
http://dx.doi.org/10.1103/RevModPhys.79.677
[7] R. Sahoo and R.R. Mishra, Phonon dispersion for armchair and
zigzag carbon nanotubes, Graphene
3, 14–19 (2014),
http://dx.doi.org/10.4236/graphene.2014.32003
[8] D. Sanchez-Portal and E. Hernandez, Vibrational properties
of single-wall nanotubes and monolayers of hexagonal BN, Phys.
Rev. B
66, 235415 (2002),
http://dx.doi.org/10.1103/PhysRevB.66.235415
[9] L. Wirtz, A. Rubio, R.A. de la Concha, and A. Loiseau, Ab
initio calculations of the lattice dynamics of boron nitride
nanotubes, Phys. Rev. B 68, 045425 (2003),
http://dx.doi.org/10.1103/PhysRevB.68.045425
[10] P.G. Radaelli,
Symmetry in Crystallography:
Understanding the International Tables, IUCr Texts on
Crystallography, Vol. 17 (Oxford University Press, Oxford,
2011),
http://dx.doi.org/10.1093/acprof:oso/9780199550654.001.0001
[11] K. Kunc and R.M. Martin, Ab initio force constants of GaAs:
A new approach to calculation of phonons and dielectric
properties, Phys. Rev. Lett.
48, 406–409 (1982),
http://dx.doi.org/10.1103/PhysRevLett.48.406
[12] F. Pascale, C.M. Zicovich-Wilson, F. Lopez, B. Civalleri,
R. Orlando, and R. Dovesi, The calculation of the vibrational
frequencies of crystalline compounds and its implementation in
the CRYSTAL code, J. Comput. Chem.
25, 888–897 (2004),
http://dx.doi.org/10.1002/jcc.20019
[13] D.C. Wallace,
Thermodynamics of Crystals (Dover,
New York, 1998),
https://www.amazon.co.uk/Thermodynamics-Crystals-WALLACE/dp/0486402126/
[14] C. Adamo and V. Barone, Toward reliable density functional
methods without adjustable parameters: The PBE0 model, J. Chem.
Phys.
110, 6158–6170 (1999),
http://dx.doi.org/10.1063/1.478522
[15] R. Dovesi, R. Orlando, A. Erba, C.M. Zicovich-Wilson, B.
Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La
Pierre, Ph. D’Arco, Y. Noël, M. Causà, M. Rérat, and B. Kirtman,
CRYSTAL14: A program for the
ab initio investigation of
crystalline solids, Int. J. Quant. Chem.
114, 1287–1317
(2014),
http://dx.doi.org/10.1002/qua.24658
[16] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M.
Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M.
Harrison, I.J. Bush, Ph. D’Arco, M. Llunell, M. Causà, and Y.
Noël,
CRYSTAL14 User’s Manual (University of Torino,
Torino, 2014),
http://www.crystal.unito.it/index.php
[17] M.F. Peintinger, D.V. Oliveira, and T. Bredow, Consistent
Gaussian basis sets of triple-zeta valence with polarization
quality for solid-state calculations, J. Comput. Chem.
34,
451–459 (2013),
http://dx.doi.org/10.1002/jcc.23153
[18] L.F. Pacios and P.A. Christiansen,
Ab initio
relativistic effective potentials with spin-orbit operators. I.
Li through Ar, J. Chem. Phys. 82, 2664–2671 (1985),
http://dx.doi.org/10.1063/1.448263
[19] M.M. Hurley, L.F. Pacios, P.A. Christiansen, R.B. Ross, and
W.C. Ermler,
Ab initio relativistic effective potentials
with spin-orbit operators. II. K through Kr, J. Chem. Phys.
84,
6840–6853 (1986),
http://dx.doi.org/10.1063/1.450689
[20] L.A. LaJohn, P.A. Christiansen, R.B. Ross, T. Atashroo, and
W.C. Ermler,
Ab initio relativistic effective potentials
with spin-orbit operators. III. Rb through Xe, J. Chem. Phys.
87,
2812–2824 (1987),
http://dx.doi.org/10.1063/1.453069
[21] A.V. Bandura and R.A. Evarestov, Structure and stability of
SnS
2-based single- and multi-wall nanotubes, Surf.
Sci.
641, 6–15 (2015),
http://dx.doi.org/10.1016/j.susc.2015.04.027
[22] H.J. Monkhorst and J.D. Pack, Special points for
Brillouin-zone integrations, Phys. Rev. B
13, 5188–5192
(1976),
http://dx.doi.org/10.1103/PhysRevB.13.5188
[23] C.M. Zicovich-Wilson, F. Pascale, C. Roetti, V.R. Saunders,
R. Orlando, and R.J. Dovesi, Calculation of vibration
frequencies of alpha-quartz: the effect of Hamiltonian and basis
set, J. Comput. Chem.
25, 1873–1881 (2004),
http://dx.doi.org/10.1002/jcc.20120
[24] M. Damnjanović and I. Milošević,
Line Groups in
Physics. Theory and Applications to Nanotubes and Polymers,
Lecture Notes in Physics, Vol. 801 (Springer, Berlin, 2010),
http://dx.doi.org/10.1007/978-3-642-11172-3
[25] S. Reich, C. Thomsen, and J. Maultzsch,
Carbon
Nanotubes: Basic Concepts and Physical Properties (Wiley,
Weinheim, 2004),
http://dx.doi.org/10.1002/9783527618040
[26] M.S. Dresselhaus, G. Dresselhaus, and A. Jorio,
Group
Theory. Application to the Physics of Condensed Matter
(Springer, Berlin, 2008),
http://dx.doi.org/10.1007/978-3-540-32899-5
[27] M. Damnjanović, B. Nicolić, and I. Milošević, Symmetry of
nanotubes rolled up from arbitrary two-dimensional lattices
along an arbitrary chiral vector, Phys. Rev. B
75,
033403 (2007),
http://dx.doi.org/10.1103/PhysRevB.75.033403
[28] A.V. Bandura and R.A. Evarestov, TiS
2 and ZrS
2
single- and double-wall nanotubes: first-principles study, J.
Comp. Chem.
35, 395–405 (2014),
http://dx.doi.org/10.1002/jcc.23508
[29] V. Shklover, T. Haibach, F. Ried, R. Nesper, and P. Novák,
Crystal structure of the product of Mg
2+ insertion
into V
2O
5 single crystals, J. Solid State
Chem.
123, 317–323 (1996),
http://dx.doi.org/10.1006/jssc.1996.0186
[30] V.V. Porsev, A.V. Bandura, and R.A. Evarestov,
Ab
initio modeling of single wall nanotubes folded from
α-
and
γ-V
2O
5 monolayers: structural,
electronic and vibrational properties, CrystEngComm
17,
3277–3285 (2015),
http://dx.doi.org/10.1039/c5ce00144g