[PDF]    http://dx.doi.org/10.3952/physics.v56i3.3365

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 164–172 (2016)


THERMODYNAMIC PROPERTIES OF NANOTUBES: ZONE-FOLDING APPROACH
Robert A. Evarestov, Andrei V. Bandura, and Vitaly V. Porsev
Quantum Chemistry Department, Saint-Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
E-mail: r.evarestov@spbu.ru

Received 3 October 2015; revised 19 January 2016; accepted 21 June 2016

A zone-folding approach is applied for the estimation of phonon contributions to the thermodynamic properties of carbon nanotubes and nanotubes based on transition metal oxides (TiO2, V2O5) and sulfides (TiS2, ZrS2) with different morphology and various chiralities. The results obtained are compared with those from the direct calculation of the thermodynamic properties of nanotubes in the harmonic approximation. All calculations have been made using the PBE0 hybrid exchange–correlation functional. It is found that the zone-folding approach allows a sufficiently accurate estimation of phonon contributions to internal energy and heat capacity and shows worse but acceptable results for Helmholtz free energy and entropy.
Keywords: carbon nanotubes, metal oxide nanotubes, metal disulfide nanotubes, thermodynamic properties of nanotubes, zone folding
PACS: 61.43.Bn, 61.46.Np, 65.80.+n

TERMODINAMINĖS NANOVAMZDELIŲ SAVYBĖS: ZONŲ PERLENKIMO METODAS

Robert A. Evarestov, Andrei V. Bandura, Vitaly V. Porsev
Sankt Peterburgo valstybinis universitetas, Rusija


References / Nuorodos

[1] R.A. Evarestov, Theoretical Modeling of Inorganic Nanostructures. Symmetry and ab-initio Calculations of Nanolayers, Nanotubes and Nanowires, Springer Series in NanoScience and Technology (Springer, Berlin, Heidelberg, 2015),
http://dx.doi.org/10.1007/978-3-662-44581-5
[2] Ge.G. Samsonidze, R. Saito, A. Jorio, M.A. Pimenta, A.G. Souza Filho, A. Grüneis, G. Dresselhaus, and M.S. Dresselhaus, The concept of cutting lines in carbon nanotube science, J. Nanosci. Nanotech. 3, 431–458 (2003),
http://dx.doi.org/10.1166/jnn.2003.231
[3] O. Dubay and G. Kresse, Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes, Phys. Rev. B 67, 035401 (2003),
http://dx.doi.org/10.1103/PhysRevB.67.035401
[4] T.B. Boykin and G. Klimeck, Practical application of zone-folding concepts in tight-binding calculations, Phys. Rev. B 71, 115215 (2005),
http://dx.doi.org/10.1103/PhysRevB.71.115215
[5] R. Saito, K. Sato, Y. Oyama, J. Jiang, Ge.G. Samsonidze, G. Dresselhaus, and M.S. Dresselhaus, Cutting lines near the Fermi energy of single-wall carbon nanotubes, Phys. Rev. B 72, 153413 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.153413
[6] J-C. Charlier, X. Blase, and S. Roche, Electronic and transport properties of nanotubes, Rev. Mod. Phys. 79, 677–732 (2007),
http://dx.doi.org/10.1103/RevModPhys.79.677
[7] R. Sahoo and R.R. Mishra, Phonon dispersion for armchair and zigzag carbon nanotubes, Graphene 3, 14–19 (2014),
http://dx.doi.org/10.4236/graphene.2014.32003
[8] D. Sanchez-Portal and E. Hernandez, Vibrational properties of single-wall nanotubes and monolayers of hexagonal BN, Phys. Rev. B 66, 235415 (2002),
http://dx.doi.org/10.1103/PhysRevB.66.235415
[9] L. Wirtz, A. Rubio, R.A. de la Concha, and A. Loiseau, Ab initio calculations of the lattice dynamics of boron nitride nanotubes, Phys. Rev. B 68, 045425 (2003),
http://dx.doi.org/10.1103/PhysRevB.68.045425
[10] P.G. Radaelli, Symmetry in Crystallography: Understanding the International Tables, IUCr Texts on Crystallography, Vol. 17 (Oxford University Press, Oxford, 2011),
http://dx.doi.org/10.1093/acprof:oso/9780199550654.001.0001
[11] K. Kunc and R.M. Martin, Ab initio force constants of GaAs: A new approach to calculation of phonons and dielectric properties, Phys. Rev. Lett. 48, 406–409 (1982),
http://dx.doi.org/10.1103/PhysRevLett.48.406
[12] F. Pascale, C.M. Zicovich-Wilson, F. Lopez, B. Civalleri, R. Orlando, and R. Dovesi, The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code, J. Comput. Chem. 25, 888–897 (2004),
http://dx.doi.org/10.1002/jcc.20019
[13] D.C. Wallace, Thermodynamics of Crystals (Dover, New York, 1998),
https://www.amazon.co.uk/Thermodynamics-Crystals-WALLACE/dp/0486402126/
[14] C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys. 110, 6158–6170 (1999),
http://dx.doi.org/10.1063/1.478522
[15] R. Dovesi, R. Orlando, A. Erba, C.M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, Ph. D’Arco, Y. Noël, M. Causà, M. Rérat, and B. Kirtman, CRYSTAL14: A program for the ab initio investigation of crystalline solids, Int. J. Quant. Chem. 114, 1287–1317 (2014),
http://dx.doi.org/10.1002/qua.24658
[16] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, Ph. D’Arco, M. Llunell, M. Causà, and Y. Noël, CRYSTAL14 User’s Manual (University of Torino, Torino, 2014),
http://www.crystal.unito.it/index.php
[17] M.F. Peintinger, D.V. Oliveira, and T. Bredow, Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations, J. Comput. Chem. 34, 451–459 (2013),
http://dx.doi.org/10.1002/jcc.23153
[18] L.F. Pacios and P.A. Christiansen, Ab initio relativistic effective potentials with spin-orbit operators. I. Li through Ar, J. Chem. Phys. 82, 2664–2671 (1985),
http://dx.doi.org/10.1063/1.448263
[19] M.M. Hurley, L.F. Pacios, P.A. Christiansen, R.B. Ross, and W.C. Ermler, Ab initio relativistic effective potentials with spin-orbit operators. II. K through Kr, J. Chem. Phys. 84, 6840–6853 (1986),
http://dx.doi.org/10.1063/1.450689
[20] L.A. LaJohn, P.A. Christiansen, R.B. Ross, T. Atashroo, and W.C. Ermler, Ab initio relativistic effective potentials with spin-orbit operators. III. Rb through Xe, J. Chem. Phys. 87, 2812–2824 (1987),
http://dx.doi.org/10.1063/1.453069
[21] A.V. Bandura and R.A. Evarestov, Structure and stability of SnS2-based single- and multi-wall nanotubes, Surf. Sci. 641, 6–15 (2015),
http://dx.doi.org/10.1016/j.susc.2015.04.027
[22] H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188–5192 (1976),
http://dx.doi.org/10.1103/PhysRevB.13.5188
[23] C.M. Zicovich-Wilson, F. Pascale, C. Roetti, V.R. Saunders, R. Orlando, and R.J. Dovesi, Calculation of vibration frequencies of alpha-quartz: the effect of Hamiltonian and basis set, J. Comput. Chem. 25, 1873–1881 (2004),
http://dx.doi.org/10.1002/jcc.20120
[24] M. Damnjanović and I. Milošević, Line Groups in Physics. Theory and Applications to Nanotubes and Polymers, Lecture Notes in Physics, Vol. 801 (Springer, Berlin, 2010),
http://dx.doi.org/10.1007/978-3-642-11172-3
[25] S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley, Weinheim, 2004),
http://dx.doi.org/10.1002/9783527618040
[26] M.S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory. Application to the Physics of Condensed Matter (Springer, Berlin, 2008),
http://dx.doi.org/10.1007/978-3-540-32899-5
[27] M. Damnjanović, B. Nicolić, and I. Milošević, Symmetry of nanotubes rolled up from arbitrary two-dimensional lattices along an arbitrary chiral vector, Phys. Rev. B 75, 033403 (2007),
http://dx.doi.org/10.1103/PhysRevB.75.033403
[28] A.V. Bandura and R.A. Evarestov, TiS2 and ZrS2 single- and double-wall nanotubes: first-principles study, J. Comp. Chem. 35, 395–405 (2014),
http://dx.doi.org/10.1002/jcc.23508
[29] V. Shklover, T. Haibach, F. Ried, R. Nesper, and P. Novák, Crystal structure of the product of Mg2+ insertion into V2O5 single crystals, J. Solid State Chem. 123, 317–323 (1996),
http://dx.doi.org/10.1006/jssc.1996.0186
[30] V.V. Porsev, A.V. Bandura, and R.A. Evarestov, Ab initio modeling of single wall nanotubes folded from α- and γ-V2O5 monolayers: structural, electronic and vibrational properties, CrystEngComm 17, 3277–3285 (2015),
http://dx.doi.org/10.1039/c5ce00144g