Received 30 May 2016; revised 20 July 2016; accepted 23 September
2016
SŪKURINIO TĖKMĖS GREIČIO
MATUOKLIO MODELIAVIMAS GARDELINIŲ DUJŲ AUTOMATŲ METODAIS:
STROUHALO IR REINOLDSO SKAIČIŲ PRIKLAUSOMYBĖ
References
/
Nuorodos
[1] L.P. Pitaevskii and
S. Stringari,
Bose-Einstein Condensation and Superfluidity
(Oxford University Press, 2016),
https://doi.org/10.1093/acprof:oso/9780198758884.001.0001
[2] P.A. Irwin, Vortices and tall buildings: A recipe for
resonance, Phys. Today
63, 68–69 (2010),
https://doi.org/10.1063/1.3490510
[3] C.L. Fefferman, Existence and smoothness of the
Navier–Stokes equation,
http://www.claymath.org/sites/default/files/navierstokes.pdf
[4] T.K. Sengupta,
Instabilities of Flows: With and Without
Heat Transfer and Chemical Reaction (Springer, 2010),
https://doi.org/10.1007/978-3-7091-0127-8
[5] A. Mallock, On the resistance of air, Proc. Roy. Soc. A
79,
262–273 (1907),
https://doi.org/10.1098/rspa.1907.0038
[6] H. Bénard, Formation de centres de giration à l'arrière d'un
obstacle en mouvement, Compt. Rendus Acad. Sci.
147,
839–842 (1908)
[7] T. von Kármán,
Aerodynamics (McGraw-Hill, 1954),
[PDF]
[8]
Instrumentation Reference Book, ed. W. Boyes, 4th
ed. (Butterworth-Heinemann, 2009),
https://www.elsevier.com/books/instrumentation-reference-book/boyes/978-0-7506-8308-1
[9] M. Reik, R. Höcker, C. Bruzesse, M. Hollmach, O. Koudal, T.
Schenkel, and H. Oertel, Flow rate measurement in a pipe flow by
vortex shedding, Forsch. Ingenieurwes.
74, 77–86 (2010),
https://doi.org/10.1007/s10010-010-0117-0
[10] T. Bohr, M.H. Jensen, G. Paladin, and A. Vulpiani,
Dynamical
Systems Approach to Turbulence (Cambridge University
Press, 1998),
https://doi.org/10.1017/CBO9780511599972
[11]
Hydrodynamic Instabilities and the Transition to
Turbulence, eds. H.L. Swinney and J.P. Gollub (Springer
Verlag, Berlin, 1981),
http://www.springer.com/us/book/9783540133193
[12] A.S. Monin and A.M. Yaglom,
Statistical Fluid Mechanics,
Vol. 1 (MIT Press, Cambridge, 1971),
https://www.amazon.co.uk/d/Books/Statistical-Fluid-Mechanics-Turbulence-Monin-Yaglom-Hardcover/B010WF4EEU/
[13] A.S. Monin and A.M. Yaglom,
Statistical Fluid Mechanics,
Vol. 2 (MIT Press, Cambridge, 1971),
https://www.amazon.co.uk/Statistical-Fluid-Mechanics-Dover-Physics/dp/0486458911/
[14] A.N. Kolmogorov, The local structure of turbulence in
incompressible viscous fluid for very large Reynolds numbers,
Compt. Rendus Acad. Sci. URSS
30, 301–305 (1941)
[15] A.N. Kolmogorov, A refinement of previous hypotheses
concerning the local structure of turbulence in incompressible
viscous fluid for very large Reynolds numbers, J. Fluid Mech.
13,
82–85 (1962),
https://doi.org/10.1017/S0022112062000518
[16] S. Wolfram, Cellular automaton fluids 1: Basic theory, J.
Stat. Phys.
45(3–4), 471–526 (1986),
https://doi.org/10.1007/BF01021083
[17] B.J.N. Wylie,
Application of Two-Dimensional Cellular
Automaton Lattice-Gas Models to the Simulation of
Hydrodynamics, PhD Thesis (University of Edinburgh, 1990),
[PDF]
[18] J.-P. Rivet and J.P. Boon,
Lattice Gas Hydrodynamics
(Cambridge University Press, 2001),
https://doi.org/10.1017/CBO9780511524707
[19] U. Frish, B. Hasslacher, and Y. Pomeau, Lattice-gas
automata for the Navier-Stokes equation, Phys. Rev. Lett.
56,
1505 (1986),
https://doi.org/10.1103/PhysRevLett.56.1505
[20] J. Hickey and I. L'Heureux, Classical nucleation theory
with a radius-dependent surface tension: A two-dimensional
lattice-gas automata model, Phys. Rev. E
87, 022406
(2013),
https://doi.org/10.1103/PhysRevE.87.022406
[21] X. Gao, C. Narteau, O. Rozier, and S.C. Du Pont, Phase
diagrams of dune shape and orientation depending on sand
availability, Sci. Rep.
5, 14677 (2015),
https://doi.org/10.1038/srep14677
[22] A. Klales, D. Cianci, Z. Needell, D.A. Meyer, and P.J.
Love, Lattice gas simulations of dynamical geometry in two
dimensions, Phys. Rev. E
82, 046705 (2010),
https://doi.org/10.1103/PhysRevE.82.046705
[23] S. Succi,
The Lattice Boltzmann Equation for Fluid
Dynamics and Beyond (Oxford University Press, 2001),
https://global.oup.com/academic/product/the-lattice-boltzmann-equation-9780198503989
[24] L.D. Landau and E.M. Lifshitz,
Course of Theoretical
Physics, Vol. 6. Fluid Mechanics, 2nd English ed.
(Elsevier Ltd., 1987),
https://www.amazon.co.uk/Fluid-Mechanics-Course-Theoretical-Physics/dp/0750627670/
[25] A. Roshko,
On the Development of Turbulent Wakes from
Vortex Streets, NACA Report 1191 (National Advisory
Committee for Aeronautics, Washington, D. C., 1954),
http://authors.library.caltech.edu/428/
[26] D. d'Humières and P. Lallemand, Numerical simulations of
hydrodynamics with lattice gas automata in two dimensions,
Complex Systems
1, 599–632 (1987),
http://www.complex-systems.com/pdf/01-4-5.pdf
[27] S. Succi, P. Santangelo, and R. Benzi, High-resolution
lattice-gas simulation of two-dimensional turbulence, Phys. Rev.
Lett.
60, 2738 (1988),
https://doi.org/10.1103/PhysRevLett.60.2738
[28] G.R. McNamara and G. Zanetti, Use of the Boltzmann equation
to simulate lattice-gas automata, Phys. Rev. Lett.
61,
2332 (1988),
https://doi.org/10.1103/PhysRevLett.61.2332
[29] F.J. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics
with enhanced collisions, EPL
9, 345 (1989),
https://doi.org/10.1209/0295-5075/9/4/008