[PDF]    http://dx.doi.org/10.3952/physics.v56i4.3415

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 191–199 (2016)


LATTICE GAS AUTOMATON MODELLING OF A VORTEX FLOW METER: STROUHAL–REYNOLDS NUMBER DEPENDENCE
Vaidas Juknevičius and Jogundas Armaitis
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio 3, LT-10222 Vilnius, Lithuania
E-mail: vaidas.juknevicius@tfai.vu.lt

Received 30 May 2016; revised 20 July 2016; accepted 23 September 2016

Motivated by recent experimental and computational results concerning a three-dimensional structure of vortices behind a vortex shedding flow meter [M. Reik et al., Forsch. Ingenieurwes. 74, 77 (2010)], we study the Strouhal–Reynolds number dependence in the vortex street in two dimensions behind a trapezoid-shaped object by employing two types of Frisch–Hasslacher–Pomeau (FHP) models. Our geometry is intended to reproduce the operation of a vortex shedding flow meter in a two-dimensional setting, thus preventing the formation of a three-dimensional vortex structure. In particular, we check if the anomalous Reynolds–Strouhal number dependence reported for three dimensions can also be found in our two-dimensional simulation. As we find that the Strouhal number is nearly independent of the Reynolds number in this particular setup, our results provide support for the hypothesis that three-dimensional flow structures are responsible for that dependence, thus hinting at the importance of the pipe diameter to the accurate operation of industrial vortex flow meters.
Keywords: vortex shedding flow meter, Karman vortex street, lattice gas
PACS: 47.11.Qr, 47.27.nf, 47.32.ck

SŪKURINIO TĖKMĖS GREIČIO MATUOKLIO MODELIAVIMAS GARDELINIŲ DUJŲ AUTOMATŲ METODAIS: STROUHALO IR REINOLDSO SKAIČIŲ PRIKLAUSOMYBĖ

Vaidas Juknevičius, Jogundas Armaitis
Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Naudojant dvimatį FHP-7 gardelinių dujų metodą straipsnyje modeliuojamas sūkurinio skysčių ir dujų tėkmės greičio matavimo prietaisas. Sūkurinis tėkmės greičio matuoklis matuoja sraute patalpinto prizmės formos objekto keliamų sūkurių atsiradimo dažnį, kuris turėtų būti proporcingas tBose-Einstein Condensation and Superfluidityėkmės greičiui. Kai kurie eksperimentiniai ir skaitinio modeliavimo rezultatai [M. Reik et al., Forsch. Ingenieurwes. 74, 77 (2010)] liudija apie šio proporcingumo pažeidimus, sukeliančius tėkmės greičio matavimo rezultatų paklaidas. Trimatė sūkurių struktūra (pasagos formos sūkuriai, susidarantys vamzdžio sienelės ir tėkmės greičio matuoklio susijungimo zonoje) įvardijama kaip galima pažeidimų priežastis. Savo straipsnyje nagrinėjame dvimatį sūkurinio tėkmės greičio matuoklio modelį, kuriame trimatės struktūros sūkuriai susidaryti negali. Mūsų rezultatai rodo, kad proporcingumo pažeidimų nėra. Todėl manome, kad trimatė sūkurių struktūra išties lemia minėtos priklausomybės pažeidimus. Straipsnyje taip pat trumpai supažindiname su hidrodinaminio modeliavimo gardelinių dujų metodų principais ir skysčio tėkmę bei sūkurių susidarymą apibūdinančiais Reinoldso ir Strouhalo skaičiais.


References / Nuorodos

[1] L.P. Pitaevskii and S. Stringari, Bose-Einstein Condensation and Superfluidity (Oxford University Press, 2016),
https://doi.org/10.1093/acprof:oso/9780198758884.001.0001
[2] P.A. Irwin, Vortices and tall buildings: A recipe for resonance, Phys. Today 63, 68–69 (2010),
https://doi.org/10.1063/1.3490510
[3] C.L. Fefferman, Existence and smoothness of the Navier–Stokes equation,
http://www.claymath.org/sites/default/files/navierstokes.pdf
[4] T.K. Sengupta, Instabilities of Flows: With and Without Heat Transfer and Chemical Reaction (Springer, 2010),
https://doi.org/10.1007/978-3-7091-0127-8
[5] A. Mallock, On the resistance of air, Proc. Roy. Soc. A 79, 262–273 (1907),
https://doi.org/10.1098/rspa.1907.0038
[6] H. Bénard, Formation de centres de giration à l'arrière d'un obstacle en mouvement, Compt. Rendus Acad. Sci. 147, 839–842 (1908)
[7] T. von Kármán, Aerodynamics (McGraw-Hill, 1954),
[PDF]
[8] Instrumentation Reference Book, ed. W. Boyes, 4th ed. (Butterworth-Heinemann, 2009),
https://www.elsevier.com/books/instrumentation-reference-book/boyes/978-0-7506-8308-1
[9] M. Reik, R. Höcker, C. Bruzesse, M. Hollmach, O. Koudal, T. Schenkel, and H. Oertel, Flow rate measurement in a pipe flow by vortex shedding, Forsch. Ingenieurwes. 74, 77–86 (2010),
https://doi.org/10.1007/s10010-010-0117-0
[10] T. Bohr, M.H. Jensen, G. Paladin, and A. Vulpiani, Dynamical Systems Approach to Turbulence (Cambridge University Press, 1998),
https://doi.org/10.1017/CBO9780511599972
[11] Hydrodynamic Instabilities and the Transition to Turbulence, eds. H.L. Swinney and J.P. Gollub (Springer Verlag, Berlin, 1981),
http://www.springer.com/us/book/9783540133193
[12] A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics, Vol. 1 (MIT Press, Cambridge, 1971),
https://www.amazon.co.uk/d/Books/Statistical-Fluid-Mechanics-Turbulence-Monin-Yaglom-Hardcover/B010WF4EEU/
[13] A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics, Vol. 2 (MIT Press, Cambridge, 1971),
https://www.amazon.co.uk/Statistical-Fluid-Mechanics-Dover-Physics/dp/0486458911/
[14] A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Compt. Rendus Acad. Sci. URSS 30, 301–305 (1941)
[15] A.N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, J. Fluid Mech. 13, 82–85 (1962),
https://doi.org/10.1017/S0022112062000518
[16] S. Wolfram, Cellular automaton fluids 1: Basic theory, J. Stat. Phys. 45(3–4), 471–526 (1986),
https://doi.org/10.1007/BF01021083
[17] B.J.N. Wylie, Application of Two-Dimensional Cellular Automaton Lattice-Gas Models to the Simulation of Hydrodynamics, PhD Thesis (University of Edinburgh, 1990),
[PDF]
[18] J.-P. Rivet and J.P. Boon, Lattice Gas Hydrodynamics (Cambridge University Press, 2001),
https://doi.org/10.1017/CBO9780511524707
[19] U. Frish, B. Hasslacher, and Y. Pomeau, Lattice-gas automata for the Navier-Stokes equation, Phys. Rev. Lett. 56, 1505 (1986),
https://doi.org/10.1103/PhysRevLett.56.1505
[20] J. Hickey and I. L'Heureux, Classical nucleation theory with a radius-dependent surface tension: A two-dimensional lattice-gas automata model, Phys. Rev. E 87, 022406 (2013),
https://doi.org/10.1103/PhysRevE.87.022406
[21] X. Gao, C. Narteau, O. Rozier, and S.C. Du Pont, Phase diagrams of dune shape and orientation depending on sand availability, Sci. Rep. 5, 14677 (2015),
https://doi.org/10.1038/srep14677
[22] A. Klales, D. Cianci, Z. Needell, D.A. Meyer, and P.J. Love, Lattice gas simulations of dynamical geometry in two dimensions, Phys. Rev. E 82, 046705 (2010),
https://doi.org/10.1103/PhysRevE.82.046705
[23] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, 2001),
https://global.oup.com/academic/product/the-lattice-boltzmann-equation-9780198503989
[24] L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol. 6. Fluid Mechanics, 2nd English ed. (Elsevier Ltd., 1987),
https://www.amazon.co.uk/Fluid-Mechanics-Course-Theoretical-Physics/dp/0750627670/
[25] A. Roshko, On the Development of Turbulent Wakes from Vortex Streets, NACA Report 1191 (National Advisory Committee for Aeronautics, Washington, D. C., 1954),
http://authors.library.caltech.edu/428/
[26] D. d'Humières and P. Lallemand, Numerical simulations of hydrodynamics with lattice gas automata in two dimensions, Complex Systems 1, 599–632 (1987),
http://www.complex-systems.com/pdf/01-4-5.pdf
[27] S. Succi, P. Santangelo, and R. Benzi, High-resolution lattice-gas simulation of two-dimensional turbulence, Phys. Rev. Lett. 60, 2738 (1988),
https://doi.org/10.1103/PhysRevLett.60.2738
[28] G.R. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas automata, Phys. Rev. Lett. 61, 2332 (1988),
https://doi.org/10.1103/PhysRevLett.61.2332
[29] F.J. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions, EPL 9, 345 (1989),
https://doi.org/10.1209/0295-5075/9/4/008