Received 10 June 2016; revised 22 July 2016; accepted 23 September
2016
KRŪVININKŲ PAGAVIMAS IR JŲ
IŠLAISVINIMAS – PAGRINDINIS VIENALYČIŲ PUSLAIDININKIŲ
ŽEMADAŽNIO TRIUKŠMO ŠALTINIS
References
/
Nuorodos
[1] J.H.J. Lorteije and
A.M.H. Hoppenbrouwers, Amplitude modulation by 1/
f noise
in resistors results in 1/Δ
f noise, Philips Res. Repts.
26,
29–39 (1971)
[2] B.K. Jones and J. Francis, Direct correlation between 1/
f
and other noise sources, J. Phys. D
8, 1172–1176 (1975),
https://doi.org/10.1088/0022-3727/8/10/003
[3] V.P. Palenskis, G.E. Leont'ev, and H.S. Mykolaitis, On the
origin of the 1/
f noise in linear resistors and p-n
junctions, Radiotekh. Elektron.
21, 2433–2434 (1976) [in
Russian, Radio Eng. Electron. Phys.]
[4] R.F Voss and J. Clarke, 1/
f noise from systems in
thermal equilibrium, Phys. Rev. Lett.
36, 42–45 (1976),
https://doi.org/10.1103/PhysRevLett.36.42
[5] F.N. Hooge, Discussion of recent experiment on 1/
f
noise, Physica
60, 130–144 (1972),
https://doi.org/10.1016/0031-8914(72)90226-1
[6] F.H. Hooge, T.G.M. Kleinpenning, and L.K.J. Vandamme,
Experimental studies on 1/
f noise, Rep. Progr. Phys.
44,
479–532 (1981),
https://doi.org/10.1088/0034-4885/44/5/001
[7] P. Dutta and P.M. Horn, Low-frequency fluctuations in
solids: 1/
f noise, Rev. Mod. Phys.
53, 497–516
(1981),
https://doi.org/10.1103/RevModPhys.53.497
[8] B. Pelegrini, One model of flicker, burst, and
generation-recombination noises, Phys. Rev. B
24,
7071–7083 (1981),
https://doi.org/10.1103/PhysRevB.24.7071
[9] A. Van der Ziel,
A Noise in Solid State Devices and
Circuits (Wiley-Interscience Publications, John Wiley
& Sons, New York, 1986)
[10] A.L. McWhorter, in:
Semiconductor Surface Physics,
ed. R.H. Kingstone (University of Pensylvania Press, 1957) pp.
207–228
[11] M.B. Weissman, 1/
f noise and other slow,
nonexponential kinetics in condensed matter, Rev. Mod. Phys.
60,
537–571 (1988),
https://doi.org/10.1103/RevModPhys.60.537
[12] M.J. Kirton and M.J. Uren, Noise in solid-state
microstructures: A new perspective on individual defects,
interface states and low-frequency (1/
f) noise, Adv.
Phys.
38, 367–468 (1989),
https://doi.org/10.1080/00018738900101122
[13] V. Palenskis, Flicker noise problem (review), Lith. Phys.
J.
30, 107–152 (1990)
[14] B.K. Jones, Electrical noise as a measure of quality and
reliability in electronic devices, in:
Advances in
Electronics and Electron Physics, Vol. 87 (Elsevier, 1993)
pp. 201–257,
https://doi.org/10.1016/s0065-2539(08)60017-7
[15] F.N. Hooge, 1/
f noise sources, IEEE Trans. Electron
Dev.
41, 1926–1935 (1994),
https://doi.org/10.1109/16.333808
[16] M.S. Kogan,
Electronic Noise and Fluctuations in Solids
(Cambridge University Press, New York, 1996),
https://doi.org/10.1017/CBO9780511551666
[17] B. Pelegrini, A general model of 1/
fγ
noise, Microelectron. Reliab.
40, 1775–1780 (2000),
https://doi.org/10.1016/S0026-2714(00)00061-5
[18] M. Nardone, V. Kozub, I.V. Karpov, and V.G. Karpov,
Possible mechanisms for 1/
f noise in chalcogenide
glasses: A theoretical description, Phys Rev. B
79(16),
165206 (2009),
https://doi.org/10.1103/PhysRevB.79.165206
[19] M.J. Uren, D.J. Day, and M.J. Kirton, 1/
f and random
telegraph noise in silicon metal-oxide-semiconductor
field-effect transistors, Appl. Phys. Lett.
47,
1195–1197 (1985),
https://doi.org/10.1063/1.96325
[20] L.K.J. Vandamme and F.H. Hooge, What do we certainly know
about 1/
f noise in MOSTs? IEEE Trans. El. Dev.
55,
3070–3085 (2008),
https://doi.org/10.1109/TED.2008.2005167
[21] F.H. Hooge and L.K.J. Vandamme, Lattice scattering causes
1/
f noise, Phys. Lett. A
66, 315–316 (1978),
https://doi.org/10.1016/0375-9601(78)90249-9
[22] F.H. Hooge, in:
Proceedings of the 7th Vilnius
Conference on Fluctuation Phenomena in Physical Systems,
ed. V. Palenskis (VU Press, Vilnius, 1994) pp. 61–69
[23] F.H. Hooge, in:
Noise in Physical Systems and 1/f
Fluctuations, Proceedings of the 13th International
Conference, eds. V. Bareikis and R. Katilius (World Scientific,
Singapore, 1995) pp. 8–13,
https://doi.org/10.1142/2764
[24] T.G.M. Kleinpenning, 1/
f noise in Hall effect:
Fluctuations in mobility, J. Appl. Phys.
51, 3438
(1980),
https://doi.org/10.1063/1.328029
[25] R.P. Jindal and A. Van der Ziel, Phonon fluctuation model
for flicker noise in elemental semiconductors, J. Appl. Phys.
52,
2884–2888 (1981),
https://doi.org/10.1063/1.329022
[26] S.V. Melkonyan, V.M. Aroutiounian, F.V. Gasparyan, and H.V.
Asriyan, Phonon mechanism of mobility equilibrium fluctuations
and properties of 1/
f noise, Phys. Rev. B
382,
65–70 (2006),
https://doi.org/10.1016/j.physb.2006.01.521
[27] B.C. Daly, K. Kang, Y. Wang, and D.G. Cahill, Picosecond
ultrasonic measurements of attenuation of longitudinal acoustic
phonons in silicon, Phys. Rev. B
80, 1744112 (2009),
https://doi.org/10.1103/PhysRevB.80.174112
[28] J. Cuffe, O. Ristow, E. Chávez, A. Shchepetov, P.-O.
Chapuis, F. Alzina, M. Hettich, M. Prunnila, J. Ahopelto, T.
Dekorsy, and C.M. Sotomayor Torres, Lifetimes of confined
acoustic phonons in ultrathin silicon membranes, Phys. Rev.
Lett.
110, 095503 (2013),
https://doi.org/10.1103/PhysRevLett.110.095503
[29] T.G.M. Kleinpenning, Theory of noise investigations on
conductors with four-probe method, J. Appl. Phys.
48,
2946–2949 (1977),
https://doi.org/10.1063/1.324107
[30] Z. Šoblickas and V. Palenskis, Noise spectroscopy of
impurity levels and 1/
f noise in high resistance silicon,
Liet. fiz. rink.
25, 88–97 (1985) [Litovskii fizicheskii
sbornik, in Russian]
[31] V. Palenskis, K. Maknys, A. Stadalnikas, Z. Šoblickas, and
A. Utorovičius, in:
Proceedings of the 7th Vilnius
Conference on Fluctuation Phenomena in Physical Systems,
ed. V. Palenskis (VU Press, Vilnius, 1994) pp. 266–273,
[32] S. Machlup, Noise in semiconductor: spectrum of two
parameter random signal, J. Appl. Phys.
25, 341–343
(1954),
https://doi.org/10.1063/1.1721637
[33] C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi
Quaranta, A review of some charge transport properties of
silicon, Solid State Electron.
20, 77–89 (1977),
https://doi.org/10.1016/0038-1101(77)90054-5
[34] V. Palenskis, Transport of electrons in donor-doped silicon
at any degree of degeneracy of electron gas, World J. Condens.
Matt. Phys.
4, 123–133 (2014),
https://doi.org/10.4236/wjcmp.2014.43017
[35] V. Palenskis and K. Maknys, Nature of low-frequency noise
in homogeneous semiconductors, Sci. Rept.
5, 18305
(2015),
https://doi.org/10.1038/srep18305
[36] A. Dargys and J. Kundrotas,
Handbook on Physical
Properties of Ge, Si, GaAs and InP (Science and
Encyclopedia Publishers, Vilnius, 1994),
[37] J. Pavelka, J. Šikula, M. Chvatal, and M. Tacano, in:
Proceedings
of the 2015 International Conference on Noise and Fluctuations
ICNF 2015 (IEEE, 2015) pp. 349–352,
[PDF]
[38] H.F. Mataré,
Defect Electronics in Semiconductors
(John Wiley and Sons, Inc., New York, 1971),
https://www.amazon.co.uk/d/Books/Defect-Electronics-Semiconductors-Herbert-F-Matare/0471576182/
[39] K.V. Ravi,
Imperfections and Impurities in
Semiconductor Silicon (John Wiley and Sons, Inc., New
York, 1981),
https://www.amazon.co.uk/Imperfections-Impurities-Semiconductor-Silicon-RAVI/dp/0471078174/
[40] R.H. Galenzer and A.G. Jordan, The electrical properties of
dislocations in silicon – I: The effects on carrier lifetime,
Solid State Electron.
12, 247–258 (1969),
https://doi.org/10.1016/0038-1101(69)90006-9