[PDF]    http://dx.doi.org/10.3952/physics.v56i4.3418

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 217–222 (2016)


ELECTRON TRANSPORT IN A COUPLED GaN/AlN/GaN CHANNEL Of NITRIDE HFET
Linas Ardaravičius, Oleg Kiprijanovič, and Juozapas Liberis
Center for Physical Sciences and Technology, Saulėtekio 3, LT-10257 Vilnius, Lithuania
E-mail: linas.ardaravicius@ftmc.lt

Received 1 June 2016; revised 30 July 2016; accepted 23 September 2016

Longitudinal hot-electron transport is investigated for the alloy-free AlGaN/AlN/{GaN/AlN/GaN} heterostructure at electric fields up to 380 kV/cm. The structure featured a coupled channel with a camelback electron density profile. The hot-electron drift velocity in the coupled channel is estimated as ~1.5×107 cm/s and is ~50% higher as compared with the standard AlN-spacer GaN 2DEG channel. The HFET with the pristine 2DEG density of 1.75×1013 cm–2 confined in the coupled channel demonstrates the optimal frequency performance in terms of electron velocity at a relatively low gate bias of VGS = –1.75 V. These results are consistent with the ultra-fast decay of hot phonons.
Keywords: nitride heterostructure, HFET, electron drift velocity, hot phonons, high electric fields
PACS: 72.10.Di, 72.20.Ht, 72.20.Fr, 72.30.+q, 85.30.Tv

ELEKTRONŲ PERNAŠA NITRIDINIAM LAUKO TRANZISTORIUI SKIRTAME SUSIETAME GaN/AlN/GaN KANALE

Linas Ardaravičius, Oleg Kiprijanovič, Juozapas Liberis
Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Eksperimentiškai ištirti su kvazidvimatėmis elektronų dujomis {GaN/AlN/GaN} susieti kanalai. Tirtas kanalas suformuotas AlGaN/AlN/GaN/AlN/GaN įvairialyčiame darinyje, užaugintame MOCVD būdu ant safyro padėklo. Dvimatės elektronų dujos buvo veikiamos išoriniu elektriniu lauku, nukreiptu lygiagrečiai darinio plokštumai (statmenai c ašiai). Nanosekundinė VACH matavimo technika panaudota siekiant sumažinti Džaulio šilumos įtaką. Elektronų dreifo greitis įvertintas darant prielaidą, kad elektronų tankis nuo elektrinio lauko nepriklauso. Nustatyta, kad susietame {GaN/AlN/GaN} kanale didžiausias elektronų dreifo greitis yra 1,5×107 cm/s, kai elektrinio lauko stipris – 130 kV/cm, o tai 50 % viršija dreifo greitį standartiniame GaN dvimačių elektronų dujų kanale, nuo barjero atskirtame tarpiniu AlN sluoksniu. Parodyta, kad susieto nitridų kanalo lauko tranzistorius pasižymi geriausia dažnine charakteristika, kai sklendės įtampa gana maža. Maksimalus dreifo greitis ir optimali tranzistoriaus veika susietame kanale priklauso nuo ultraspartaus karštųjų optinių fononų suirimo.


References / Nuorodos

[1] H. Morkoҫ, Nitride Semiconductor Devices: Fundamentals and Applications (Wiley-VCH, Weinheim, 2013),
https://doi.org/10.1002/9783527649006
[2] Y. Yue, Z. Hu, J. Guo, B.S. Rodriguez, G. Li, R. Wang, F. Faria, B. Song, X. Gao, S. Guo, T. Kosel, G. Snider, P. Fay, D. Jena, and H.G. Xing, Ultrascaled InAlN/GaN high electron mobility transistors with cutoff frequency of 400 GHz, Jpn. J. Appl. Phys. 52, 08JN14 (2013),
https://doi.org/10.7567/JJAP.52.08JN14
[3] C.H. Oxley and M.J. Uren, Measurements of unity gain cutoff frequency and saturation velocity of a GaN HEMT transistor, IEEE Trans. Electron Dev. 52, 165–169 (2005),
https://doi.org/10.1109/TED.2004.842719
[4] L. Ardaravičius, M. Ramonas, O. Kiprijanovič, J. Liberis, A. Matulionis, L.F. Eastman, J.R. Shealy, X. Chen, and Y.J. Sun, Comparative analysis of hot electron transport in AlGaN/GaN and AlGaN/AlN/GaN 2DEG channels, Phys. Status Solidi A 202, 808–811 (2005),
https://doi.org/10.1002/pssa.200461618
[5] J.M. Barker, D.K. Ferry, S.M. Goodnick, D.D. Koleske, A. Allerman, and R.J. Shul, High fieldtransport in GaN/AlGaN heterostructures, J. Vac. Sci. Technol. B 22, 2045–2050 (2004),
https://doi.org/10.1116/1.1775199
[6] B.A. Danilchenko, S.E. Zelensky, E. Drok, S.A. Vitusevich, S.V. Danylyuk, N. Klein, H. Lüth, A.E. Belyaev, and V.A. Kochelap, Hot-electron transport in AlGaN/GaN two-dimensional conducting channels, Appl. Phys. Lett. 85, 5421–5423 (2004),
https://doi.org/10.1063/1.1830078
[7] J.M. Barker, D.K. Ferry, D.D. Koleske, and R.J. Shul, Bulk GaN and AlGaN/GaN heterostructure drift velocity measurements and comparison to theoretical models, J. Appl. Phys. 97, 063705 (2005),
https://doi.org/10.1063/1.1854724
[8] L. Ardaravičius, M. Ramonas, J. Liberis, O. Kiprijanovič, A. Matulionis, J. Xie, M. Wu, J.H. Leach, and H. Morkoҫ, Electron drift velocity in lattice-matched AlInN/AlN/GaN channel at high electric fields, J. Appl. Phys. 106, 073708 (2009),
https://doi.org/10.1063/1.3236569
[9] S. Bajaj, O.F. Shoron, P.S. Park, S. Krishnamoorthy, F. Akyol, T.-H. Hung, S. Reza, E.M. Chumbes, J. Khurgin, and S. Rajan, Density-dependent electron transport and precise modeling of GaN high electron mobility transistors, Appl. Phys. Lett. 107, 153504 (2015),
https://doi.org/10.1063/1.4933181
[10] L. Ardaravičius, J. Liberis, O. Kiprijanovič, A. Matulionis, M. Wu, and H. Morkoҫ, Hot-electron drift velocity and hot-phonon decay in AlInN/AlN/GaN, Phys. Status Solidi RRL 5, 65–67 (2011),
https://doi.org/10.1002/pssr.201004502
[11] A. Matulionis, Hot phonons in GaN channels for HEMTs, Phys. Status Solidi A 203, 2313–2325 (2006),
https://doi.org/10.1002/pssa.200622101
[12] K.T. Tsen, J.G. Kiang, D.K. Ferry, and H. Morkoҫ, Subpicosecond time-resolved Raman studies of LO phonons in GaN: dependence on injected carrier density, Appl. Phys. Lett. 89, 112111 (2006),
https://doi.org/10.1063/1.2349315
[13] A. Matulionis, J. Liberis, I. Matulionienė, M. Ramonas, E. Šermukšnis, J.H. Leach, M. Wu, X. Ni, X. Li, and H. Morkoҫ, Plasmon-enhanced heat dissipation in GaN-based two-dimensional channels, Appl. Phys. Lett. 95, 192102 (2009),
https://doi.org/10.1063/1.3261748
[14] A. Matulionis, J. Liberis, I. Matulionienė, E. Šermukšnis, J.H. Leach, M. Wu, and H. Morkoҫ, Novel fluctuation-based approach to optimization of frequency performance and degradation of nitride heterostructure field effect transistors, Phys. Status Solidi A 208, 30–36 (2011),
https://doi.org/10.1002/pssa.201026361
[15] H. Sun, A.R. Alt, H. Benedickter, E. Feltin, J.-F. Carlin, M. Gonschorek, N. Grandjean, and C.R. Bolognesi, 205-GHz (Al,In)N/GaN HEMTs, IEEE Electron Device Lett. 31, 957–959 (2010),
https://doi.org/10.1109/LED.2010.2055826
[16] D.S. Lee, X. Gao, S. Guo, and T. Palacios, InAlN/GaN HEMTs with AlGaN back barriers, IEEE Electron Device Lett. 32, 617–619 (2011),
https://doi.org/10.1109/LED.2011.2111352
[17] A. Matulionis, J. Liberis, E. Šermukšnis, L. Ardaravičius, A. Šimukovič, C. Kayis, C.Y. Zhu, R.A. Ferreyra, V. Avrutin, Ü. Özgür, and H. Morkoҫ, Window for better reliability of nitride heterostructure field effect transistors, Microelectron. Reliabil. 52, 2149–2152 (2012),
https://doi.org/10.1016/j.microrel.2012.06.071
[18] J.H. Leach, C.Y. Zhu, M. Wu, X. Ni, X. Li, J. Xie, Ü. Özgür, H. Morkoҫ, J. Liberis, E. Šermukšnis, A. Matulionis, T. Paskova, E. Preble, and K.R. Evans, Effect of hot phonon lifetime on electron velocity in InAlN/AlN/GaN heterostructure field effect transistors on bulk GaN substrates, Appl. Phys. Lett. 96, 133505 (2010),
https://doi.org/10.1063/1.3358392
[19] A. Matulionis, Electron density window for best frequency performance, lowest phase noise and slowest degradation of GaN heterostructure field-effect transistors, Semicond. Sci. Technol. 28, 074007 (2013),
https://doi.org/10.1088/0268-1242/28/7/074007
[20] A. Matulionis, J. Liberis, I. Matulionienė, M. Ramonas, and E. Šermukšnis, Ultrafast removal of LO-mode heat from a GaN-based two-dimensional channel, Proc. IEEE 98, 111826 (2010),
https://doi.org/10.1109/JPROC.2009.2029877
[21] J.H. Leach, M. Wu, H. Morkoҫ, J. Liberis, E. Šermukšnis, M. Ramonas, and A. Matulionis, Ultrafast decay of hot phonons in an AlGaN/AlN/AlGaN/GaN camelback channel, J. Appl. Phys. 110, 104504 (2011),
https://doi.org/10.1063/1.3660264
[22] L. Ardaravičius, O. Kiprijanovič, J. Liberis, A. Matulionis, X. Li, F. Zhang, M. Wu, V. Avrutin, Ü. Özgür, and H. Morkoҫ, Hot-electron drift velocity in AlGaN/AlN/AlGaN/GaN camelback channel, Semicond. Sci. Technol. 27, 122001 (2012),
https://doi.org/10.1088/0268-1242/27/12/122001
[23] R.A. Ferreyra, X. Li, F. Zhang, C. Zhu, N. Izyumskaya, C. Kayis, V. Avrutin, Ü. Özgür, and H. Morkoҫ, Microwave performance of AlGaN/AlN/GaN-based single and coupled channels HFETs, Proc. SPIE 8625, 86252B (2013),
https://doi.org/10.1117/12.2005165
[24] R. Tülek, E. Arslan, A. Bayrakli, S. Turhana, S. Gökden, O. Duygulud, A.A. Kaya, T. Firat, A. Teke, and E. Özbay, The effect of GaN thickness inserted between two AlN layers on the transport properties of a lattice matched AlInN/AlN/GaN/AlN/GaN double channel heterostructure, Thin Solid Films 551, 146–152 (2014),
https://doi.org/10.1016/j.tsf.2013.11.114
[25] A. Wille, H. Yacoub, A. Debald, H. Kalisch, and A. Vescan, AlGaN/AlN-GaN-SL HEMTs with multiple 2DEG channels, J. Electron. Mater. 44, 1263–1267 (2015),
https://doi.org/10.1007/s11664-014-3474-x
[26] E. Arslan, S. Turan, S. Gökden, A. Teke, and E. Özbay, Current-transport mechanisms in the AlInN/AlN/GaN single-channel and AlInN/AlN/GaN/AlN/GaN double-channel heterostructures, Thin Solid Films 548, 411–418 (2013),
https://doi.org/10.1016/j.tsf.2013.09.026
[27] L. Ardaravičius, O. Kiprijanovič, J. Liberis, A. Matulionis, E. Šermukšnis, R.A. Ferreyra, V. Avrutin, Ü. Özgür, and H. Morkoҫ, Threshold field for soft damage and electron drift velocity in InGaN two-dimensional channels, Semicond. Sci. Technol. 30, 105016 (2015),
https://doi.org/10.1088/0268-1242/30/10/105016
[28] D.S. Lee, X. Gao, S. Guo, D. Kopp, P. Fay, and T. Palacios, 300-GHz InAlN/GaN HEMTs with InGaN back barrier, IEEE Electron Device Lett. 32, 1525–1527 (2011),
https://doi.org/10.1109/LED.2011.2164613