[PDF]    http://dx.doi.org/10.3952/physics.v57i1.3451

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 57, 12–18 (2017)


MAJORANA SPINOR FROM THE POINT OF VIEW OF GEOMETRIC ALGEBRA
Adolfas Dargys
Semiconductor Physics Institute, Center for Physical Sciences and Technology, Saulėtekio 3, LT-10222 Vilnius, Lithuania
E-mail: adolfas.dargys@ftmc.lt

Received 26 September 2016; revised 6 October 2016; accepted 21 December 2016

Majorana spinors are constructed in terms of the multivectors of relativistic Cl1,3 algebra. Such spinors are found to be multiplied by primitive idempotents which drastically change spinor properties. Running electronic waves are used to solve the real Dirac–Majorana equation transformed to Cl1,3 algebra. From the analysis of the solution it is concluded that free Majorana particles do not exist, because relativistic Cl1,3 algebra requires the massive Majorana particle to move with light velocity.
Keywords: Majorana spinors, Dirac–Majorana equation, geometric algebra, Clifford algebra
PACS: 03.65.-w, 04.20.Gz, 04.50.-h

MAJORANOS SPINORIAI GEOMETRINĖS ALGEBROS POŽIŪRIU

Adolfas Dargys
Fizinių ir technologijos mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lietuva

Pritaikius geometrinės algebros multivektorius buvo sudaryti ir išnagrinėti Majoranos spinoriai, turintys realų, o ne labiau įprastą kompleksinį pavidalą. Parodyta, kad tokie spinoriai savyje turi primityvų idempotentą, kuris iš esmės keičia spinoriaus savybes. Gauti spinoriai pritaikyti reliatyvistinės Dirako-Majoranos lygties spektrui – dalelės energijos priklausomybei nuo jos impulso – apskaičiuoti taikant geometrinę Cl1,3 algebrą. Išspręstas bėgančios elektroninės bangos uždavinys. Iš sprendinio analizės prieita prie išvados, kad Majoranos tipo laisvosios dalelės neegzistuoja, nes gauto spektro savybės nesiderina su šiuolaikinės fizikos įvaizdžiu, kadangi masę turinčios dalelės greitis negali viršyti arba būti lygus šviesos greičiui.

References / Nuorodos

[1] E. Majorana, Teoria simmetrica dell'elettrone e del positrone, Nuovo Cim. 14, 171–184 (1937). English translation in Soryushiron Kenkyu 63, 149–462 (1981),
https://doi.org/10.1007/978-3-540-48095-2_10
[2] A. Aste, A direct road to Majorana field, Symmetry 2010(2), 1776–1809 (2010),
https://doi.org/10.3390/sym2041776
[3] E. Marsch, A new route to the Majorana equation, Symmetry 2013(5), 271–286 (2013),
https://doi.org/10.3390/sym5040271
[4] A. Loinger and T. Marsico, On Majorana's equation, arXiv:1502.07651v1 (2014),
https://arxiv.org/abs/1502.07651v1
[5] S.R. Elliott and M. Franz, Colloquium: Majorana fermions in nuclear, particle, and solid-state physics, Rev. Mod. Phys. 87(1), 137–163 (2015),
https://doi.org/10.1103/RevModPhys.87.137
[6] C.W.J. Beenakker, Search of Majorana fermions in superconductors, Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013),
https://doi.org/10.1146/annurev-conmatphys-030212-184337
[7] F. Wilczek, Majorana returns, Nat. Phys. 5, 614–618 (2009),
https://doi.org/10.1038/nphys1380
[8] D. Hestenes, Space-Time Algebra (Gordon and Breach, New York, 1966)
[9] D. Hestenes, Real spinor fields, J. Math. Phys. 8(4), 798–808 (1967),
https://doi.org/10.1063/1.1705279
[10] D. Hestenes, Observables, operators, and complex numbers in the Dirac theory, J. Math. Phys. 16, 556–572 (1975),
https://doi.org/10.1063/1.522554
[11] C. Doran and A. Lasenby, Geometric Algebra for Physicists (Cambridge University Press, Cambridge, 2003),
https://doi.org/10.1017/CBO9780511807497
[12] P. Lounesto, Clifford Algebras and Spinors (Cambridge University Press, Cambridge, 1997),
https://www.amazon.co.uk/Clifford-Algebras-Spinors-Mathematical-Society/dp/0521599164
[13] I.R. Porteous, Clifford Algebras and the Classical Groups (Cambridge University Press, Cambridge, 1995),
http://www.cambridge.org/academic/subjects/mathematics/algebra/clifford-algebras-and-classical-groups
[14] A. Trautman, Clifford algebras and their representations, in: Encyclopedia of Mathematical Physics, Vol. 1, eds. J.-P. Françoise, G.L. Naber, and S.T. Tsou (Elsevier, Oxford, 2006) pp. 518–530,
https://doi.org/10.1016/B0-12-512666-2/00016-X
[15] C. Itzykson and J.-B.H. Zuber, Quantum Field Theory, Appendix (McGraw-Hill Inc., USA, 1980),
https://www.amazon.co.uk/Quantum-Field-Theory-Dover-Physics/dp/0486445682
[16] C. Doran, A. Lasenby, and S. Gull, States and operators in the spacetime algebra, Found. Phys. 23(9), 1239 (1993). Similar formula for the Majorana spinor was published in this paper. Alas, with errors,
https://doi.org/10.1007/BF01883678
[17] A. Dargys [unpublished results, 2016]