Julius Važgėla, Meera Stephen, Gytis Juška, Kristijonas
Genevičius, and Kęstutis Arlauskas
Received 20 September 2016; revised 3 November 2016; accepted 21
December 2016
In this work we investigate ternary blends
of an active layer in bulk heterojunction solar cells and
estimate the influence of their composition on solar cell
parameters such as efficiency, mobility and recombination. The
studied ternary blends are composed of low bandgap polymer
poly[2,6-(4,4-bis(2-ethylhexyl)dithieno[3,2-b:2,3-d]silole)-alt-4,7-(2,1,3
benzothiadiazole)] (Si-PCPDTBT), high bandgap polymer
poly(3-hexylthiophene-2,5-diyl) (P3HT) and fullerene
derivative [6,6]-phenyl-C61-butyric acid methyl
ester (PCBM). The Langevin recombination reduction factor as
well as charge carrier mobilities show an increasing trend
with increasing Si-PCPDTBT content in the blends. The highest
efficiencies have been achieved for the optimized blends of
Si-PCPDTBT:P3HT:PCBM with ratios of 0.4:0.6:1, respectively.
Keywords: TOF, organic
solar cells, bimolecular recombination, Si-PCPDTBT
PACS: 73.50.Gr,
73.61.Ph, 73.61.Wp
TRIKOMPONENČIŲ
Si-PCPDTBT:P3HT:PCBM SAULĖS ELEMENTŲ KRŪVININKŲ PERNAŠOS
SAVYBĖS
Tyrėme trikomponentines tūrinės
heterosandūros saulės celes ir nustatėme jų kompozicijos įtaką
tokiems saulės elementų parametrams kaip naudingumo
koeficientas, judris bei rekombinacija. Tirtieji trikomponenčiai
sluoksniai buvo sudaryti iš mažo draustinio energijų juostų
tarpo polimero poli[2,6-(4,4-bis(2-etilheksil)
ditieno[3,2-b:2,3-d]silol)-alt-4,7-(2,1,3 benzotiadiazolas)]
(Si-PCPDTBT), P3HT ir PCBM. Nustatyta, kad, didėjant polimero
Si-PCPDTBT santykiui, išauga Lanževeno rekombinacijos redukcijos
koeficientas. Didžiausi naudingumo koeficientai nustatyti
optimizuotuose Si-PCPDTBT:P3HT:PCBM 0.4:0.6:1 sluoksniuose.
References
/
Nuorodos
[1] D.M.A. Green, K.
Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Solar cell
efficiency tables (Version 47), Progr. Photovoltaics
24(7),
905–913 (2016),
https://doi.org/10.1002/pip.2788
[2] M.C. Scharber and N.S. Sariciftci, Efficiency of
bulk-heterojunction organic solar cells, Progr. Polymer. Sci.
38,
1929–1940 (2013),
https://doi.org/10.1016/j.progpolymsci.2013.05.001
[3] S. Albrecht, S. Schäfer, I. Lange, S. Yilmaz, I. Dumsch, S.
Allard, U. Scherf, A. Hertwig, and D. Neher, Light management in
PCPDTBT:PC70BM solar cells: A comparison of standard and
inverted device structures, Org. Electron.
13, 615–622
(2012),
https://doi.org/10.1016/j.orgel.2011.12.019
[4] J. Peet, L. Wen, P. Byrne, S. Rodman, K. Forberich, Y. Shao,
N. Drolet, R. Gaudiana, G. Dennler, and D. Waller, Bulk
heterojunction solar cells with thick active layers and high
fill factors enabled by a bithiophene-co-thiazolothiazole
push-pull copolymer, Appl. Phys. Lett.
98, 043301
(2011),
https://doi.org/10.1063/1.3544940
[5] G. Juška, K. Genevičius, N. Nekrašas, and G. Šliaužys,
Two-dimensional Langevin recombination, Phys. Status Solidi C
7(3–4),
980–983 (2010),
https://doi.org/10.1002/pssc.200982660
[6] M. Koppe, H.-J. Egelhaaf, G. Dennler, M.C. Scharber, C.J.
Brabec, P. Schilinsky, and C.N. Hoth, Near IR sensitization of
organic bulk heterojunction solar cells: towards optimization of
the spectral response of organic solar cells, Adv. Funct. Mater.
20, 338–346 (2010),
https://doi.org/10.1002/adfm.200901473
[7] A. Pivrikas, G. Juška, A.J. Mozer, M. Scharber, K.
Arlauskas, N.S. Sariciftci, H. Stubb, and R. Österbacka,
Bimolecular recombination coefficient as a sensitive testing
parameter for low-mobility solar-cell materials, Phys. Rev.
Lett.
94, 176806 (2005),
https://doi.org/10.1103/PhysRevLett.94.176806
[8] M. Koppe, H.-J. Egelhaaf, E. Clodic, M. Morana, L. Lüer, A.
Troeger, V. Sgobba, D.M. Guldi, T. Ameri, and C.J. Brabec,
Charge carrier dynamics in a ternary bulk heterojunction system
consisting of P3HT, fullerene, and a low bandgap polymer, Adv.
Energ. Mater.
3, 949–958 (2013),
https://doi.org/10.1002/aenm.201201076
[9] G. Juška, N. Nekrašas, V. Valentinavičius, P. Meredith, and
A. Pivrikas, Extraction of photogenerated charge carriers by
linearly increasing voltage in the case of Langevin
recombination, Phys. Rev. B
84, 155202 (2011),
https://doi.org/10.1103/PhysRevB.84.155202
[10] M.C. Scharber, M. Koppe, J. Gao, F. Cordella, M.A. Loi, P.
Denk, M. Morana, H.J. Egelhaaf, K. Forberich, G. Dennler, R.
Gaudiana, D. Waller, Z. Zhu, X. Shi, and C.J. Brabec, Influence
of the bridging atom on the performance of a low-bandgap bulk
heterojunction solar cell, Adv. Mater.
22, 367–370
(2010),
https://doi.org/10.1002/adma.200900529
[11] T.M. Clarke, J. Peet, P. Denk, G. Dennler, C.
Lungenschmied, and A.J. Mozer, Non-Langevin bimolecular
recombination in a silole-based polymer:PCBM solar cell measured
by time-resolved charge extraction and resistance-dependent
time-of-flight techniques, Energ. Environ. Sci.
5,
5241–5245 (2012),
https://doi.org/10.1039/c1ee02434e
[12] B. Philippa, M. Stolterfoht, R.D. White, M. Velusamy, P.L.
Burn, P. Meredith, and A. Pivrikas, Molecular weight dependent
bimolecular recombination in organic solar cells, J. Chem. Phys.
141, 054903 (2014),
https://doi.org/10.1063/1.4891369
[13] S.S. van Bavel, M. Bärenklau, G. de With, H. Hoppe, and J.
Loos, P3HT/PCBM bulk heterojunction solar cells: impact of blend
composition and 3D morphology on device performance, Adv. Funct.
Mater.
20, 1458–1463 (2010),
https://doi.org/10.1002/adfm.200902247
[14] P. Kovacik, H.E. Assender, and A.A.R. Watt, Morphology
control in co-evaporated bulk heterojunction solar cells, Sol.
Energ. Mater. Sol. Cells
117, 22–28 (2013),
https://doi.org/10.1016/j.solmat.2013.05.021