[PDF]    https://doi.org/10.3952/physics.v57i1.3454

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 57, 37–41 (2017)


CHARGE CARRIER TRANSPORT PROPERTIES IN TERNARY Si-PCPDTBT:P3HT:PCBM SOLAR CELLS
Julius Važgėla, Meera Stephen, Gytis Juška, Kristijonas Genevičius, and Kęstutis Arlauskas
Department of Solid State Electronics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: julius.vazgela@ff.vu.lt

Received 20 September 2016; revised 3 November 2016; accepted 21 December 2016

In this work we investigate ternary blends of an active layer in bulk heterojunction solar cells and estimate the influence of their composition on solar cell parameters such as efficiency, mobility and recombination. The studied ternary blends are composed of low bandgap polymer poly[2,6-(4,4-bis(2-ethylhexyl)dithieno[3,2-b:2,3-d]silole)-alt-4,7-(2,1,3 benzothiadiazole)] (Si-PCPDTBT), high bandgap polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The Langevin recombination reduction factor as well as charge carrier mobilities show an increasing trend with increasing Si-PCPDTBT content in the blends. The highest efficiencies have been achieved for the optimized blends of Si-PCPDTBT:P3HT:PCBM with ratios of 0.4:0.6:1, respectively.
Keywords: TOF, organic solar cells, bimolecular recombination, Si-PCPDTBT
PACS: 73.50.Gr, 73.61.Ph, 73.61.Wp

TRIKOMPONENČIŲ Si-PCPDTBT:P3HT:PCBM SAULĖS ELEMENTŲ KRŪVININKŲ PERNAŠOS SAVYBĖS

Julius Važgėla, Meera Stephen, Gytis Juška, Kristijonas Genevičius, Kęstutis Arlauskas
Vilniaus universiteto Kietojo kūno elektronikos katedra, Vilnius, Lietuva

Tyrėme trikomponentines tūrinės heterosandūros saulės celes ir nustatėme jų kompozicijos įtaką tokiems saulės elementų parametrams kaip naudingumo koeficientas, judris bei rekombinacija. Tirtieji trikomponenčiai sluoksniai buvo sudaryti iš mažo draustinio energijų juostų tarpo polimero poli[2,6-(4,4-bis(2-etilheksil) ditieno[3,2-b:2,3-d]silol)-alt-4,7-(2,1,3 benzotiadiazolas)] (Si-PCPDTBT), P3HT ir PCBM. Nustatyta, kad, didėjant polimero Si-PCPDTBT santykiui, išauga Lanževeno rekombinacijos redukcijos koeficientas. Didžiausi naudingumo koeficientai nustatyti optimizuotuose Si-PCPDTBT:P3HT:PCBM 0.4:0.6:1 sluoksniuose.

References / Nuorodos

[1] D.M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Solar cell efficiency tables (Version 47), Progr. Photovoltaics 24(7), 905–913 (2016),
https://doi.org/10.1002/pip.2788
[2] M.C. Scharber and N.S. Sariciftci, Efficiency of bulk-heterojunction organic solar cells, Progr. Polymer. Sci. 38, 1929–1940 (2013),
https://doi.org/10.1016/j.progpolymsci.2013.05.001
[3] S. Albrecht, S. Schäfer, I. Lange, S. Yilmaz, I. Dumsch, S. Allard, U. Scherf, A. Hertwig, and D. Neher, Light management in PCPDTBT:PC70BM solar cells: A comparison of standard and inverted device structures, Org. Electron. 13, 615–622 (2012),
https://doi.org/10.1016/j.orgel.2011.12.019
[4] J. Peet, L. Wen, P. Byrne, S. Rodman, K. Forberich, Y. Shao, N. Drolet, R. Gaudiana, G. Dennler, and D. Waller, Bulk heterojunction solar cells with thick active layers and high fill factors enabled by a bithiophene-co-thiazolothiazole push-pull copolymer, Appl. Phys. Lett. 98, 043301 (2011),
https://doi.org/10.1063/1.3544940
[5] G. Juška, K. Genevičius, N. Nekrašas, and G. Šliaužys, Two-dimensional Langevin recombination, Phys. Status Solidi C 7(3–4), 980–983 (2010),
https://doi.org/10.1002/pssc.200982660
[6] M. Koppe, H.-J. Egelhaaf, G. Dennler, M.C. Scharber, C.J. Brabec, P. Schilinsky, and C.N. Hoth, Near IR sensitization of organic bulk heterojunction solar cells: towards optimization of the spectral response of organic solar cells, Adv. Funct. Mater. 20, 338–346 (2010),
https://doi.org/10.1002/adfm.200901473
[7] A. Pivrikas, G. Juška, A.J. Mozer, M. Scharber, K. Arlauskas, N.S. Sariciftci, H. Stubb, and R. Österbacka, Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials, Phys. Rev. Lett. 94, 176806 (2005),
https://doi.org/10.1103/PhysRevLett.94.176806
[8] M. Koppe, H.-J. Egelhaaf, E. Clodic, M. Morana, L. Lüer, A. Troeger, V. Sgobba, D.M. Guldi, T. Ameri, and C.J. Brabec, Charge carrier dynamics in a ternary bulk heterojunction system consisting of P3HT, fullerene, and a low bandgap polymer, Adv. Energ. Mater. 3, 949–958 (2013),
https://doi.org/10.1002/aenm.201201076
[9] G. Juška, N. Nekrašas, V. Valentinavičius, P. Meredith, and A. Pivrikas, Extraction of photogenerated charge carriers by linearly increasing voltage in the case of Langevin recombination, Phys. Rev. B 84, 155202 (2011),
https://doi.org/10.1103/PhysRevB.84.155202
[10] M.C. Scharber, M. Koppe, J. Gao, F. Cordella, M.A. Loi, P. Denk, M. Morana, H.J. Egelhaaf, K. Forberich, G. Dennler, R. Gaudiana, D. Waller, Z. Zhu, X. Shi, and C.J. Brabec, Influence of the bridging atom on the performance of a low-bandgap bulk heterojunction solar cell, Adv. Mater. 22, 367–370 (2010),
https://doi.org/10.1002/adma.200900529
[11] T.M. Clarke, J. Peet, P. Denk, G. Dennler, C. Lungenschmied, and A.J. Mozer, Non-Langevin bimolecular recombination in a silole-based polymer:PCBM solar cell measured by time-resolved charge extraction and resistance-dependent time-of-flight techniques, Energ. Environ. Sci. 5, 5241–5245 (2012),
https://doi.org/10.1039/c1ee02434e
[12] B. Philippa, M. Stolterfoht, R.D. White, M. Velusamy, P.L. Burn, P. Meredith, and A. Pivrikas, Molecular weight dependent bimolecular recombination in organic solar cells, J. Chem. Phys. 141, 054903 (2014),
https://doi.org/10.1063/1.4891369
[13] S.S. van Bavel, M. Bärenklau, G. de With, H. Hoppe, and J. Loos, P3HT/PCBM bulk heterojunction solar cells: impact of blend composition and 3D morphology on device performance, Adv. Funct. Mater. 20, 1458–1463 (2010),
https://doi.org/10.1002/adfm.200902247
[14] P. Kovacik, H.E. Assender, and A.A.R. Watt, Morphology control in co-evaporated bulk heterojunction solar cells, Sol. Energ. Mater. Sol. Cells 117, 22–28 (2013),
https://doi.org/10.1016/j.solmat.2013.05.021